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Abstract
This paper presents an articulatory-to-acoustic conversion
method using electromagnetic midsagittal articulography
(EMA) measurements as input features. Neural networks,
including feed-forward deep neural networks (DNNs) and
recurrent neural networks (RNNs) with long short-term term
memory (LSTM) cells, are adopted to map EMA features
towards not only spectral features (i.e. mel-cepstra) but also
excitation features (i.e. power, U/V flag and F0). Then speech
waveforms are reconstructed using the predicted spectral and
excitation features. A cascaded prediction strategy is proposed
to utilize the predicted spectral features as auxiliary input to
boost the prediction of excitation features. Experimental results
show that LSTM-RNN models can achieve better objective and
subjective performance in articulatory-to-spectral conversion
than DNNs and Gaussian mixture models (GMMs). The
strategy of cascaded prediction can increase the accuracy of
excitation feature prediction and the neural network-based
methods also outperform the GMM-based approach when
predicting power features.
Index Terms: articulatory-to-acoustic conversion, deep neural
network, recurrent neural network, Gaussian mixture model

1. Introduction
Speech is originated from articulatory movements which in-
volve the systematic motions of a series of apparatus such as
tongue, jaw, velum, etc. Therefore, articulatory features and
acoustic features are inherently related. Similar to acoustic-
to-articulatory inversion mapping [1], the conversion from
articulatory features to acoustic features is also useful in many
applications. In speech synthesis, the characteristics of the
synthetic speech can be conveniently controlled by manipulat-
ing articulatory features [2]. In silent speech interface (SSI)
[3], the articulatory-to-acoustic conversion can be used as an
alternative to faciliate conversation in high-background-noise
environments, or as an aid for the speech-handicapped, such
as the laryngectomees.

To capture the movements of articulators, different tech-
niques have been proposed [4–6]. Electromagnetic midsagittal
articulography (EMA) [7] is one of them and has been exploited
in many studies. EMA data is recorded by a set of sensors
glued on articulators. It has quite high temporal resolution and
is able to track the motions of the main articulators accurately.
In previous work, EMA data has been widely utilized in speech
recognition [8], acoustic-articulatory inversion mapping [9] and
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text-to-speech synthesis [2]. In this paper, EMA data is adopted
as input for articulatory-to-acoustic conversion.

Various methods have been proposed to convert articulatory
features towards acoustic features and they can be grouped into
two main categories: physical-model-based approach and data-
driven approach [10]. In the physical-model-based approach,
physical models are constructed to approximate the structure of
vocal tract and the speech production mechanism. Then speech
signals can be generated by controlling excitation and vocal
tract using articulatory measurements [11]. The data-driven
approach learns the mapping relationship between articulatory
and acoustic features from training data using statistical models.
This approach developed rapidly in the last decade and is the
focus of this paper. Different statistical models have been
utilized in articulatory-to-acoustic conversion, such as Gaussian
mixture models (GMM) [12], hidden Markov models (HMM)
[6, 13], and deep neural networks (DNN) [10]. These work
can obtain quite accurate spectral trajectories from articulatory
parameters. However, the mapping towards excitation features
has not been comprehensively investigated. On the other
hand, recurrent neural networks (RNN) with long short-term
memory (LSTM) cells [14] have been successfully applied to
some speech sequence generation tasks, such as text-to-speech
synthesis [15] and acoustic-to-articulatory inversion mapping
[16]. Compared with feed-forward neural networks, RNNs
provide better ability of processing sequential data by using
cyclical connections among hidden nodes. Therefore, it is
worthwhile to investigate the performance of using LSTM-
RNNs in the articulatory-to-acoustic conversion task.

The contribution of this paper is two-fold. First, LSTM-
RNNs are introduced to map EMA features towards spectral
parameters. Experimental results show that this approach can
achieve better objective and subjective performance than GMM
and DNN-based methods. Second, the feasibility of recon-
structing excitation features, including power, U/V flag and F0,
from EMA features is explored. A cascaded prediction strategy
is proposed, in which the predicted spectra are used as input to
help the excitation prediction. Finally a complete process flow
of EMA-to-waveform transformation can be achieved.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief overview of the models used in our work. Section 3
introduces our proposed methods in detail. Experimental results
and conclusions are given in Section 4 and 5 respectively.

2. Previous Work
2.1. GMM-based articulatory-to-acoustic conversion

Consider a sequence of input articulatory feature vectors x =
[x1,x2, . . . ,xT ] and a parallel sequence of output acoustic
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Figure 1: Illustrations of a DNN with two hidden layers (a) and
an RNN with one hidden layer (b).

feature vectors y = [y1,y2, . . . ,yT ], where T is the number
of frames. The joint distribution of the articulatory and acoustic
features modeled by a GMM is

p(zt|Θ) = p(xt,yt|Θ) =
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where Θ denotes the parameter set of the GMM which can
be estimated from training data using EM algorithm under
maximum likelihood criterion, N (·,μ,Σ) denotes a normal
distribution with mean vector μ and covariance matrix Σ, M is
the number of mixture components, and αm means the weight
of the m-th component. At mapping stage, the distribution
of acoustic features given input articulatory feature sequence
can be derived from (1). Then, the converted acoustic features
can be estimated using minimum mean-square error (MMSE)
criterion or by maximum likelihood estimation (MLE) [17].

2.2. DNN-based articulatory-to-acoustic conversion

A DNN is a multi-layer perceptron with several hidden layers
between the input layer and the output layer, as illustrated in
Fig.1(a). In a DNN, units in one layer are fully connected
to the units in the layer above, but there are no connections
among units in the same layer. DNNs can be trained in a
two-stage strategy: the pre-training stage and the fine-tuning
stage [18]. For regression tasks, the fine-tuning stage adopts
back-propagation (BP) algorithm to minimize the mean square
error (MSE) on training set. DNNs have been applied to
articulatory-to-acoustic conversion in [10], where the input
vector xt includes EMA features, frame energy, F0 and nasality
at each frame, and the output vector yt denotes MFCC features
calculated from STRAIGHT spectrum [19]. Experimental
results in [10] show that DNNs can achieve better performance
in predicting spectral features than GMMs.

2.3. RNNs with LSTM units

RNNs are artificial neural networks with connections between
units forming a directed cycle. A typical structure of RNNs is
shown in Fig.1(b) where there are cyclical connections among
hidden units at the same layer. Unlike feed-forward neural
networks, RNNs can make better use of the context information
of the input sequence, which makes it more powerful when
classifying or generating sequential data. In an RNN with one
hidden layer, given an input sequence x = [x1,x2, . . . ,xT ],
the sequences of hidden vectors h = [h1,h2, . . . ,hT ] and
output vectors y = [y1,y2, . . . ,yT ] can be calculated as

ht = H(Wxhxt +Whhht−1 + bh),

yt = Whyht,
(2)
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Figure 2: Diagram of the proposed articulatory-to-acoustic
conversion method. The dashed lines indicate the cascaded
prediction strategy.

where t ∈ [1, T ], T is the number of frames, H is the activation
function, W and b denote weight matrices and bias vectors
respectively. A deep RNN can be built up by stacking multiple
recurrent hidden layers one on top of another. Usually, the
back-propagation through time (BPTT) algorithm, which is a
generalization of the BP for feed-forward networks, is used
to train an RNN [20]. Traditional RNNs have the vanishing
(and exploding) gradient problem. Thus, the long short-term
memory (LSTM) architecture has been proposed to deal with
this issue [14]. An LSTM unit is a complex hidden unit. It
has three gates, namely input gates, output gates and forget
gates, which determine when to remember the input, when
to output the value and whether to remember or forget the
value respectively. The detailed definition of the activation
function in an LSTM unit used in this paper can be found
in [21]. Recently, LSTM-RNNs have been successfully applied
to speech generation tasks such as text-to-speech synthesis [15]
and visual speech synthesis [22].

3. Proposed Method
Different from previous work [10,17] which only predicts spec-
tral features from EMA data, this paper aims at reconstructing
speech waveforms using only EMA input. Therefore, not only
spectral features but also excitation features, including power,
U/V flag, and F0 values, need to be generated by articulatory-
to-acoustic conversion. The schematic diagram of the proposed
method is shown in Fig. 2. STRAIGHT [19] is adopted as the
vocoder for acoustic feature extraction and speech waveform
reconstruction in this paper. The spectral features at each frame
are represented by the mel-cepstral coefficients (MCC) derived
from STRAIGHT spectrum excluding the 0-th order. The power
at each frame is calculated as the 0-th order of MCCs. The U/V
flags and F0 values are also extracted by STRAIGHT analysis.
Considering the different properties of spectral and excitation
features, these four acoustic features are converted from EMA
input using separate models in our method.

For EMA-to-spectrum conversion, three types of models,
i.e. GMMs, DNNs, and LSTM-RNNs are implemented and
compared. These models are built following the methods
introduced in Section 2, where xt and yt denotes the input
EMA feature vector and output MCC feature vector at the t-th
frame respectively. Both features contain dynamic components
and parameter generation algorithm with dynamic features
[23] is adopted at mapping stage to generate smooth MCC
trajectories. The model configurations, such as the number of
mixtures for GMMs, the depths and hidden unit numbers for
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DNNs and LSTM-RNNs, are tuned using a validation set in
experiments.

Compared with EMA-to-spectrum conversion, to predict
excitation features, such as powers and F0 contours, from
EMA data is more difficult because EMA data describes the
characteristic of vocal tract and its relationship with vocal cord
excitation is not explicit. However, researchers have observed
the influence of F0 on vowel articulation [24]. Therefore, it
is worthwhile to investigate if state-of-the-art machine learn-
ing algorithms can model such influence and further predict
excitation features from EMA observations. The three types
of models for EMA-to-spectrum conversion are also applied
to the prediction of excitation features. Considering that U/V
flags are binary and it may be inappropriate to predict U/V flags
using GMMs, only DNNs and RNNs are adopted to predict U/V
flags and F0 values in our experiments. The neural networks
for predicting U/V flag conversion are trained for classification
instead of regression under cross-entropy (CE) criterion. When
training the neural networks for F0 prediction, F0 interpolation
at unvoiced frames is conducted first using an exponential decay
function [25]. At conversion time, continuous F0 contours
and binary U/V flags are mapped from input EMA features
simultaneously. Then, the F0 values at the frames predicted
to be unvoiced are discarded to form final F0 contours with
unvoiced segments.

Limited by the number of sensors and the difficulty of
data acquisition, EMA features are always low-dimensional
and can only describe the articulatory configurations during
pronouciation roughly. In order to utilize more information
that describes the characteristics of vocal tract for EMA-to-
excitation conversion, a cascaded prediction strategy is pro-
posed and is shown as dashed lines in Fig. 2. In this strategy, the
predicted spectral features are concatenated with EMA features
to form the input vectors for predicting powers, U/V flags and
F0 values. Although the predicted spectral features may be
inaccurate, they are expected to carry on more detailed vocal
tract information than EMA measurements and thus to boost
the performance of predicting excitation features.

4. Experiments
4.1. Experimental setup

The MNGU0 database [26] was used in our experiments. This
database consisted of 1263 British English utterances from one
male speaker with parallel acoustic and EMA recordings. EMA
features were captured from 6 sensors located at tongue dorsum,
tongue body, tongue lip, jaw, upper lip and lower lip with a
sampling frequency of 200Hz. For each sensor, the coordinates
on the front-to-back axis and the bottom-to-top axis (relative to
viewing the speakers head from the front) were used, making a
total of 12 static EMA features at each frame. The waveforms
were in 16 kHz PCM format with 16 bit precision. Spectral
features (i.e. 1-st to 40-th orders of MCCs), powers (i.e. 0-
th order of MCCs), U/V flags and logarithmic F0 values were
extracted from the waveform using STRAIGHT vocoder [19].
As introduced in Section 3, the F0 values at unvoiced frames
were interpolated by an exponential decay function [25]. The
first derivatives of EMA, spectral, power, and F0 features were
employed as dynamic features. Considering that the available
EMA data for one speaker was usually small, 100 utterances
were sampled from the database to build the training set for our
experiments. The validation set and test set contained 13 and 20
utterances respectively.

Table 1: The average MCDs (dB) on test set of using GMMs,
DNNs, and LSTM-RNNs for EMA-to-spectrum conversion.

Method GMM DNN LSTM-RNN

MCD 3.61 3.43 3.09

Table 2: Preference scores (%) on intelligibility (Int.) and
naturalness (Nat.) between speech generated using GMMs,
DNNs, and LSTM-RNNs for EMA-to-spectrum conversion,
where N/P stands for “no preference” and p means the p-value
of t-test between two systems.

GMM DNN LSTM-
RNN

N/P p

Int.
16.50 42.50 - 41.00 <0.001
4.17 - 78.63 17.20 <0.001

- 3.67 76.79 19.53 <0.001

Nat.
19.70 41.45 - 38.85 <0.001
8.43 - 65.83 25.74 <0.001

- 2.50 82.19 15.31 <0.001

4.2. EMA-to-spectrum conversion

The performance of EMA-to-spectrum conversion using GMM-
s, DNNs and LSTM-RNNs was investigated by experiments.
The mel-cepstral distortion (MCD) in dB [17] between the
ground truth and the predicted mel-cepstra was adopted as
the objective evaluation measure. In this paper, MCDs were
calculated only on non-silent frames. When training GMMs,
full covariance matrices were used. The number of mixtures
was set to {2, 4, 8, 16, 32, 64, 128} respectively and 32 was
found to be optimum according to their MCDs on the validation
set. When training DNNs, the learning rate was fixed at 0.0001
and the momentum was set to be 0.9. The DNN architecture
was tuned to be two hidden layers and 4096 hidden nodes each
layer using the validation set. When training LSTM-RNNs, the
iteration number was set to 30 epochs. The learning rate was
initialized to be 0.001, and was halved each epoch since the
15-th epoch. The model architecture was also tuned using the
validation set and finally an LSTM-RNN with two hidden layers
and 1024 nodes per layer was adopted.

The average MCDs on test set of using GMMs, DNNs and
LSTM-RNNs were summarized in Table 1. From this table, we
can see that the two neural-network-based methods achieved
lower MCDs than GMMs. This confirms the effectiveness of
using neural networks with deep structures in describing the
non-linear and complex mapping relationship between EMA
and spectral features. The LSTM-RNN-based method per-
formed better than the DNN-based one due to its advantage of
taking the input history into account.

Furthermore, three groups of ABX preference tests were
conducted on the crowdsourcing platform of Amazon Mechan-
ical Turk (https://www.mturk.com) to investigate the
subjective performance of EMA-to-spectrum conversion using
different models. In each preference test, speech waveforms
of twenty utterances in the test set were reconstructed using
the spectral features predicted by two different models.1 Each
pairs of generated speech were evaluated in random order by
at least twenty-five English native listeners. The listeners were
asked to judge which utterance sounded more intelligible and
which one was more natural. The results of the preference
tests were shown in Table 2. We can see that these subjective

1Examples of reconstructed speech waveforms in our experiments
can be found at http://home.ustc.edu.cn/˜liuzhch/
IS2016/demo.html.
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Table 3: The RMSEs on test set of using GMMs, DNNs, and
LSTM-RNNs for EMA-to-power conversion, where “RNN”
stand for “LSTM-RNN” , the prefix “cas” in method names
denotes using the proposed cascaded prediction strategy, and
“DNN11” means using a context window of 11 frames to form
input features when training DNNs.

Method GMM DNN DNN11 RNN

RMSE 1.035 0.803 0.666 0.612
Method casGMM casDNN casDNN11 casRNN

RMSE 0.786 0.635 0.632 0.560

Table 4: The error rates (%) on test set of using DNNs and
LSTM-RNNs for EMA-to-U/V flag conversion. The method
names are the same as the ones used in Table 3.

Method DNN DNN11 RNN

Error Rate 26.15 23.84 23.40
Method casDNN casDNN11 casRNN

Error Rate 21.98 20.29 21.49

evaluation results are consistent with the objective ones shown
in Table 1. Using DNNs and LSTM-RNNs for EMA-to-
spectrum conversion obtained significantly higher preference
scores on intelligibility and naturalness than using GMMs.
LSTM-RNNs achieved the best subjective performance among
these three models.

4.3. EMA-to-excitation conversion

The objective evaluation results of EMA-to-power conversion
using different models were shown in Table 3. Here, the model
architectures were also tuned on validation set. The GMM had
32 mixtures. The DNN with two hidden layers and 64 nodes per
layer and the LSTM-RNN with two hidden layers and 16 nodes
per layer were adopted. The spectral features for cascaded
prediction were generated using the LSTM-RNN model shown
in Table 1 and 2. From Table 3, we can see that DNNs
achieved better performance than GMMs when predicting pow-
er features. The contextual information can be utilized to
further improve the prediction accuracy by either using a wider
input window or adopting a recurrent model structure. The
proposed cascaded prediction strategy was effective for both
GMMs and neural networks. The method using LSTM-RNNs
and cascaded prediction obtained the lowest RMSE of power
prediction. However, when listening to the reconstructed speech
waveforms, we found that the accuracy of power prediction at
some silent frames still needs to be improved.

The objective evaluation results of EMA-to-U/V flag con-
version and EMA-to-F0 conversion were shown in Table 4 and
5 respectively. The DNN with one hidden layer and 64 hidden
nodes and the LSTM-RNN with two hidden layers and 32 nodes
per layer were adopted for EMA-to-U/V flag conversion. For
EMA-to-F0 conversion, we adopted the DNN and LSTM-RNN
models both with two hidden layers and 64 nodes per layer. As
seen in these two tables, when the cascaded prediction strategy
was not applied, the LSTM-RNN-based conversion achieved
the best performance. DNNs benefited more from the cascaded
prediction than LSTM-RNNs for predicting either U/V flags or
F0s. The DNNs with cascaded prediction and an 11-frame input
window achieved the best results in both tables.

In order to evaluate the subjective performance of EMA-
to-excitation conversion and the overall quality of EMA-to-
waveform transformation, four systems were built for listening
tests, including

Table 5: The RMSEs (Hz) on test set of using DNNs and
LSTM-RNNs for EMA-to-F0 conversion. The method names
are the same as the ones used in Table 3.

Method DNN DNN11 RNN

RMSE 25.72 24.49 23.18
Method casDNN casDNN11 casRNN

RMSE 23.74 22.76 23.02

Table 6: Preference scores (%) on naturalness between speech
generated using the four systems introduced in Section 4.3

CvAll CvSpe HTS100 HTS1000 N/P p
34.12 40.22 - - 25.67 0.0735
77.27 - 13.79 - 8.94 <0.001
18.85 - - 66.42 14.73 <0.001

• CvAll: EMA-to-waveform transformation, where spec-
tral features were predicted by the LSTM-RNN model
in Table 1, powers were predicted by the casRNN model
in Table 3, and U/V flags and F0s were predicted by the
casDNN11 models in Table 4 and 5;

• CvSpe: EMA-to-waveform transformation, where spec-
tral features were predicted by the LSTM-RNN model in
Table 1, and the other features were natural;

• HTS100: HMM-based text-to-speech synthesis [27] us-
ing the same training set of 100 utterances as EMA-to-
waveform transformation;

• HTS1000: HMM-based text-to-speech synthesis using
1000 utterances in the MNGU0 database as training set.

Three groups of ABX preference tests were conducted on the
crowdsourcing platform of Amazon Mechanical Turk (https:
//www.mturk.com) to compare the naturalness of speech
produced by these four systems. Each test adopted twenty
sentences in the test set and employed thirty English native
listeners. The results were summarized in Table 6. Com-
paring the CvAll and CvSpe systems, we can see there was
no significant difference between using the excitation features
predicted from EMA data by neural networks and using natural
excitation features in terms of the naturalness of reconstructed
speech waveforms. In the preference tests of comparing the
CvAll system with the two speech synthesis systems, the power
of silent frames predicted by the CvAll system was fixed to be
zero to ignore the power prediction error at non-speech frames.
Under this condition, the output of the CvAll system was better
than the HMM-based parametric speech synthesis system built
using the same database and worse than the synthesis system
built using a larger training set as shown in Table 6.

5. Conclusions
This paper has proposed an articulatory-to-acoustic conversion
method using neural networks. In this method, spectral fea-
tures and excitation features are predicted in a cascaded way
from EMA input. Experimental results show that LSTM-
RNNs achieve significantly better performance than GMMs and
DNNs in EMA-to-spectrum and EMA-to-power conversion.
The effectiveness of the cascaded prediction strategy is also
demonstrated by experiments. To utilize other neural network
models (such as bidirectional LSTM-RNNs) and more articu-
latory input (such as fMRI images) for articulatory-to-acoustic
conversion will be tasks of our future work.
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