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Abstract
This paper presents a novel voice conversion method based
on matrix variate Gaussian mixture model (MV-GMM) using
features of multiple frames. In voice conversion studies, ap-
proaches based on Gaussian mixture models (GMM) are still
widely utilized because of their flexibility and easiness in han-
dling. They treat the joint probability density function (PDF) of
feature vectors from source and target speakers as that of joint
vectors of the two vectors. Addition of dynamic features to the
feature vectors in GMM-based approaches achieves certain per-
formance improvements because the correlation between mul-
tiple frames is taken into account. Recently, a voice conversion
framework based on MV-GMM, in which the joint PDF is mod-
eled in a matrix variate space, has been proposed and it is able
to precisely model both the characteristics of the feature spaces
and the relation between the source and target speakers. In this
paper, in order to additionally model the correlation between
multiple frames in the framework more consistently, MV-GMM
is constructed in a matrix variate space containing the features
of neighboring frames. Experimental results show that an cer-
tain performance improvement in both objective and subjective
evaluations is observed.
Index Terms: voice conversion, Gaussian mixture model, ma-
trix variate Gaussian mixture model, multiple frame features

1. Introduction
Voice conversion (VC), specifically speaker conversion dis-
cussed in this paper, is a technique to modify non-linguistic in-
formation — in this case speaker characteristics — while main-
taining linguistic information unchanged. In speaker conver-
sion, a statistical mapping function is constructed using pairs of
features extracted from utterances of source and target speakers.
Gaussian mixture model (GMM) [1] is widely used to construct
mapping functions, as well as Neural Network (NN) [2] and
Nonnegative Matrix Factorization (NMF) [3].

Founded on flexibilities of GMM-based approaches, sev-
eral expanded models are proposed, such as a method in which
dynamic features are taken into account [4] . In this method, re-
lationship between features of adjacent frames are considered,
and a conversion function is designed to maximize the likeli-
hood of a time sequence of the target features given that of the
source ones. Since dynamics of speech are captured, conversion
performance of the method is improved well.

Generally in GMM-based VC, both the features extracted
from the source and target speakers are concatenated and they
are represented as a joint vector. In addition, when dynamic fea-
tures are taken into account, they are also included in the joint
vector. Finally, the characteristics of the static feature spaces,
those of the dynamic ones, and the correlation of the source and

target speakers are mixed together in the joint vector space. In
order to model VC functions precisely, these information should
be properly treated.

Voice conversion based on matrix variate Gaussian mixture
models (MV-GMM), in which joint features from the source
and target are represented as matrices, has been proposed [5].
In this model, a separable structure is derived to covariances of
matrix features. Two types of covariance matrices, i.e. row and
column matrices capture the characteristics of the feature spaces
and the correlation between the source and target, respectively.
Since they induce an effective training algorithm for the model,
MV-GMM constructs a precise conversion function.

Basically both GMM and MV-GMM are mixture models
of normal distributions. Hence, similar extensions to GMM-
based VC can be applied to the MV-GMM approach. In this
paper, in order to additionally model the correlation between
adjacent frames in MV-GMM, voice conversion based on MV-
GMM using multiple frame features is proposed. In the pro-
posed method, it is expected that the separable structure in MV-
GMM enables the model to capture the correlation between ad-
jacent frames more precisely than the joint vector approach.

2. GMM-based VC with joint vectors
In this section, GMM-based voice conversion is briefly de-
scribed [1]. A feature vector of time index t from an utterance
of a source speaker is defined as xt = [x1, x2, . . . , xn]>, while
yt = [y1, y2, . . . , yn]> represents that from an utterance of a
target speaker, where n denotes the dimension of the feature
vectors and (·)> notifies the transposition of vector or matrix.
Note that these utterances include the same linguistic content.
The probability density of the joint vector zt = [x>t ,y

>
t ]> is

modeled by GMM as follows:
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and the covariance matrix of the m-the Gaussian component,
respectively. µ(z)

m , Σ
(z)
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variance matrices of the source and target speakers separately,
which shown as follows:
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Σ
(·)
m shows covariance matrices of the source and target speak-

ers, or cross-covariance matrices between them, which are usu-
ally restricted to diagonal matrices in order to mitigate the in-
fluence of overfitting.
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A mapping function to convert the source vector xt to the
target vector yt is derived based on the conditional probability
density of yt. This probability density can be represented by
the parameters of the joint density model as follows:

P
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where
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D(y)
m = Σ(yy)

m −Σ(yx)
m Σ(xx)−1
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The converted feature ŷt when xt is given can be generated by
the following equation using maximum likelihood criterion:

ŷt =

(
M∑

m=1

γm,tD
(y)−1
m

)−1( M∑
m=1

γm,tD
(y)−1
m E

(y)
m,t

)
,

γm,t = P
(
m|xt,yt,λ

(z)
)
. (8)

Dynamic features may also be contained in a GMM-based
model [4]. They are usually defined as difference between
the previous and next frames, and they are denoted by ∆xt

and ∆yt. Xt = [x>t ,∆x
>
t ]>, Yt = [y>t ,∆y

>
t ]> de-

note 2D-dimensional feature vectors which consist of both
static and dynamic features. Time sequences of the source
and target feature vectors are vectorized and described as
x = [x>1 ,x

>
2 , . . . ,x

>
T ]>, y = [y>1 ,y

>
2 , . . . ,y

>
T ]>, X =

[X>1 ,X
>
2 , . . . ,X

>
T ]>, and Y = [Y >1 ,Y >2 , . . . ,Y >T ]>. For

each frame, a joint vector is defined as Zt = [X>t ,Y
>
t ]>, and

the joint probability density is modeled by GMM. When a time
sequence X is given, the conditional probability density of Y
can be shown as:

P
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The conditional probability density at each frame can also be
modeled as GMM. At frame t , the posterior of the m-th mix-
ture component and its corresponding conditional probability
density of Yt in Equation 9 are described as
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Finally, a target sequence ŷ can be derived as a solution of the
following optimization problem:

ŷ = arg maxP
(
Y |X,λ(Z)

)
s.t. Y = Wy. (14)

Figure 1: Relation between yt and Yt. ∆yt is defined as
0.5(yt+1 − yt−1).

Figure 1 is an example ofW . In this case, the dynamic feature
∆yt is defined as 0.5(yt+1−yt−1), and the corresponding win-
dow matrixW is derived. The conversion function is written as
the equation bellow based on maximum likelihood estimation:

ŷ =
(
W>D(Y )−1W

)−1

W>D(Y )−1E(Y ). (15)

D(Y )−1,D(Y )−1E(Y ) are parameters in time sequence, which
written as:
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Maximum likelihood parameter generation described in Equa-
tion 15 achieves a certain improvement of conversion perfor-
mance since time correlations between adjacent frames are
taken into account. However, dynamic features has different
properties from those of static features. The joint vector con-
tains both static and dynamic features, which tends to present
characteristics of feature space with different properties to-
gether. In this concern, this model may not be so reasonable
in considering correlations between adjacent frames.

3. MV-GMM for VC
In this section, voice conversion based on matrix variate Gaus-
sian model is briefly explained [5]. Here,X is a random matrix
whose size is n× p. When X follows a normal distribution of
matrix variate, it can be written as follow:

X ∼ Nmv(X;M ,U ,V ), (20)
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where M is an matrix whose size is n × p, representing the
mean information of the normal distribution. U and V are ma-
trices whose sizes are n × n and p × p, which represent the
covariance structure of row and column spaces, respectively. A
normal distribution of matrix variate corresponds to that of vec-
tor variate which is represented as follows [9]:

P (vec(X)|λ) = N (vec(X); vec(M),V ⊗U) , (21)

where vec() is the operator that change a matrix into a vector.
V ⊗U means Kronecker product of the two matrices. Accord-
ing to Equation 21, the matrix variate normal distribution differs
from the vector variate normal distribution. Compared with the
vector variate normal distribution, it has a restricted covariance
structure based on Kronecker product. Separating the covari-
ance structure into two matrices U and V makes it possible to
represent properties of the row and column spaces, respectively.

Normal distribution of matrix can be applied to voice con-
version, in a similar way to that of normal distribution of vector.
Let xt, yt be the feature vectors of the source and target speak-
ers. xt, yt are combined into one joint matrix Zt = [xt,yt] ∈
RD×S , where D means the dimension of feature space, and
S the dimension of speaker space. In the case of one source
speaker and one target speaker, S = 2. The probability density
of Zt is represented by a mixture model shown as follows:

P
(
Zt|λ(Z)

)
=

M∑
m=1

wmNmv(Zt;Mm,Um,Vm) (22)

According to Equation 22, the probability density is defined as
the weighted sum of normal distribution of each component.In
each component, the matrix variate normal distribution is indi-
cated by three matrix parameters Mm, Um, and Vm; Mm is
the mean matrix,Um the covariance matrix of the feature space,
andVm the covariance matrix capturing the correlation between
the source and target. These parameters can be estimated by EM
algorithm shown as follows:

γm,t =
wmNmv(Zt;Mm,Um,Vm)∑M

m=1 wmNmv(Zt;Mm,Um,Vm)
(23)
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T∑
t=1
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A conversion function is derived based on the conditional prob-
ability density P (yt|xt), referred to Equation 3. The condi-
tional probability density of the m-th component is shown as
follows:

P
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(Z)
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= N (yt;Em,t;Dm) , (28)

Em.t = µ(y)
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v
(xx)
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)
Um, (30)

where v(·)m shows elements of Vm. Separating the covariance
structure into two directions induces an effective estimation as
Equations 25 and 26. Hence MVGMM-based VC achieves
more concise and proper modeling.

4. MVGMM VC with multiple frame
features

In this section, we introduce features from multiple frames into
MVGMM-based VC. Let xt, yt be feature vectors from utter-
ances of the source and target speakers at frame t. In order to
capture time correlations, features of the source ranging from
xt−Nx to xt+Nx and those of the target ranging from yt−Ny

to yt+Ny are focused on. The joint matrix Zt is defined as
Zt = [xt−Nx , . . . ,xt . . .xt+Nx ,yt−Ny . . .yt . . .yt+Ny ] ∈
RD×S , where D denotes the dimension of the feature space,
and where S denotes the total number of dimension consider-
ing multiple speakers and frames. The probability density of
Zt modeled by MVGMM is described as the same equation of
Equation 22. In this case, Um, i.e. the covariance structure
for the feature space has the same dimension with that of when
multiple frames are not taken into account. Only the dimension
of Vm increases as Equation 31;

Vm =

[
V

(xx)
m V

(xy)
m

V
(yx)
m V

(yy)
m

]
. (31)

Two types of the conversion functions are derived according
to whether multiple frames of the target are modeled. When a
single frame feature of the target speaker is used, the conversion
function is derived on each frame. The conditional probability
density of yt givenXt = [xt−Nx , . . . ,xt, . . . ,xt+Nx ] is

P
(
yt|Xt,λ

(Z)
)

=

M∑
m=1

P
(
m|Xt,λ

(Z)
)
× P

(
yt|Xt,m,λ

(Z)
)
, (32)

where

P
(
m|Xt,λ

(Z)
)

=
wmN

(
vec(Xt); vec(M

(x)
m ),V

(xx)
m ⊗Um

)
∑M

m=1 wmN
(

vec(Xt); vec(M
(x)
m ),V

(xx)
m ⊗Um

) ,
(33)

P
(
yt|Xt,m,λ

(Z)
)

= N
(
yt;E

(y)
m,t,D

(y)
m

)
, (34)

E
(y)
m,t = µ(y)

m + V (yx)
m V (xx)−1

m

(
Xt − µ(X)

m

)
, (35)

D(y)
m =

(
V (yy)
m − V (yx)

m V (xx)−1
m V (xy)

m

)
Um. (36)

The target ŷt can be generated by a simillar way to Equation 8.
When multiple frames of the target speaker are taken

into account, maximum likelihood sequence estimation [4] is
adopted according to Equation 15, where the relation between
vec(Y ) and y is shown in Figure 2 [6].

Comparing the proposed method with GMM-based model
containing dynamic features, both of them are models consider-
ing correlations between adjacent frames. Instead of containing
dynamic features which has different properties from static fea-
tures, the proposed method contains also the static features of
adjacent frames which shows similar properties to the current
frame. The proposed method is regarded as a more reasonable
model because all elements of the joint variate are static features
instead of mixing static and dynamic features together.
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Figure 2: Relation between vec(Y ) and y

 4.4

 4.6

 4.8

 8  16  32  64  128  256  512

M
e

l-
c
e

p
s
tr

a
l 
d

is
to

rt
io

n
[d

B
]

Number of mixtures

GMM-VC w/o delta
GMM-VC w/ delta
MVGMM-VC (1 to 1)
MVGMM-VC (3 to 1)
MVGMM-VC (3 to 3)

Figure 3: Results of objective evaluations

5. Experimental evaluation
5.1. Experimental setups

To evaluate the performance of the proposed method, objective
and subjective evaluations were carried out. We used speech
data of two male speakers (MMY as the source speaker, MHT
as the target speaker) from ATR Japanese speech database [7].
250 pairs of utterances were selected for training, and 50 pairs
not included in the training data were selected for testing. As
the proposed methods, we considered the method in which only
multiple frame features from the source are modeled and the
method in which multiple frame features both from the source
and target are modeled. GMM-based approaches with/without
dynamic features, and MVGMM-based one without multiple
frames were compared with the proposed approaches. Diago-
nal structures were adopted for cross-covariance matrices in the
conventional GMM-based methods, and full covariance matri-
ces are used in the MV-GMM methods. 24-dimensional mel-
cepstrum derived from STRAIGHT analysis [8] was used as
feature vectors.

5.2. Objective evaluation

For the objective evaluations, Mel-cepstral distortion was used.
From Figure 3, when the number of mixture components is
larger than 64, the proposed methods outperformed the con-
ventional ones. The performance was much better when mul-
tiple frames features is contained for both the source and tar-
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Figure 4: Results of subjective evaluations

get speakers (MVGMM-VC (3 to 3)). Besides, the proposed
method (MVGMM-VC (3 to 3)) achieved better performance
than the joint vector approach with dynamic features (GMM w/
delta). Note that both the methods take information of neighbor-
ing frames into account. This means that the separable structure
in the proposed method has a positive effect in voice conversion.

5.3. Subjective evaluation

A subjective evaluation was processed in XAB method, where
each listener was provided with utterances converted from two
different kinds of conversion methods and he/she was asked to
select the more similar one to the original speech of the target
speaker. Ten Japanese native speakers aging from 20 to 35 ,
each of whom were provided with 70 pairs of sentences in 7
groups of comparison, including comparison between the pro-
posed and conventional methods, and among the proposed ones.
Mixture of 256 was used for all conversion methods. For wave-
form generation, logF0 values were linearly converted based
on mean and variance values, and then STRAIGHT vocoder
was adopted.

Figure 4 shows the result of the subjective evaluation. The
error bars in the figure represent 95% confidence intervals.
From Figure 4, the proposed method with multiple frame fea-
tures of both the source and target (MVGMM-VC (3 to 3)) is
more likely to be selected comparing to all other methods, while
the proposed method with multiple frames feature only on the
source side (MVGMM-VC (3 to 1)) performs better those not
considering relationship between frames, however, it is not as
preferable when compared with the joint vector approach with
dynamic features (GMM w/ delta). This result suggests that
modeling the multiple frames of both the source and target has
a considerable influence on perception.

6. Conclusion
This paper presents a novel voice conversion method based on
matrix variate Gaussian mixture model (MV-GMM) using fea-
tures of multiple frames. The proposed method can effectively
model features of utterances from the source and target speak-
ers. Both objective and subjective evaluations show that the
proposed method containing multiple frame features of both the
source and target achieved a certain improvement of conversion
performance, compared with the conventional methods.
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