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Abstract
Single channel source separation (SCSS) algorithms that utilise
discriminative source models perform better in comparison to
those that are trained independently. However, all the aspects
of training discriminative models have not been addressed in
the literature. For instance, the choice of dimensions of source
models (number of columns of NMF, Dictionary etc) not only
influences the fidelity of a given source but also impacts the
interference introduced in it. Therefore choosing a right dimen-
sion parameter for every source model is crucial for an effec-
tive separation. In fact, the similarity between the constituent
sources can be different for different mixtures and thus, dimen-
sions should also be chosen specific to the sources in the con-
cerned mixture. Further, separation of a given constituent from
a mixture, assuming remaining to be interferers, offers more
freedom for the particular constituent and hence provide better
separation. In this paper, we propose a generic discriminative
learning framework where we separate one source at a time and
embed our dimension search algorithm in the training of dis-
criminative source models. We apply our framework on the
NMF based SCSS algorithms and demonstrate a performance
improvement in separation for both speech-speech and speech-
music mixture.
Index Terms: discriminative training, source separation, NMF

1. Introduction
Source separation involves separating the constituent sources
or components from their mixture. A classic example of the
source separation problem is the cocktail party problem where
a listener tries to follow one voice in a mix of several peo-
ple talking together. The extraction of the component signals
from the mixed signal can have many potential applications:
separation of two speech signals can help in automatic speech
recognition (ASR) [1]; separation of vocal and music may be
required for music retrieval [2]; in case of communication sys-
tems, separation of two different signals will help mitigate inter-
ference; separation of an image into texture and cartoon (piece-
wise smooth) parts for image analysis or synthesis [3].

This paper focusses on the single channel source separation
(SCSS) problem when only a single observation of the mixture
of two signals is available, even though our method is also ap-
plicable for a mixture of more than two sources. The SCSS sys-
tem is underdetermined implying infinite possibilities of set of
sources forming a given observed mixture. Recovery of the ac-
tual constituents of a given mixture thus requires prior informa-
tion about its constituents. For instance, when the two sources
lie in R

n and if the basis from which these sources derive their
data points are known and are orthogonal, then one can easily
recover these two sources from their mixture by simply pro-
jecting the mixture vector on the two orthogonal basis. Single
channel source separation (SCSS) problem thus is about discov-

ering structures that not only represents each of the constituent
sources but that also aids in the separation of these sources from
a mixture. These structures can be derived from source-specific
training data in the form of learned source models. Ideally, mu-
tually orthogonal source models that also represent the sources
accurately would lead to exact recovery in a noiseless mixing
case. Generally such models may not exist as the sources may
be too “similar” to each other, e.g, speech of two males or fe-
males. Therefore one would like to learn models which are as
orthogonal as possible or, in other words, source models should
be sufficiently “discriminative”. Once the models are learned,
roughly speaking, the mixture is projected on these models by
solving an optimisation problem to recover/reconstruct the in-
dividual components.

1.1. Related work

Various work on the SCSS problem have been proposed us-
ing learned models. Casey and Westner [4] proposed inde-
pendent subspace analysis (ISA), an extension of independent
component analysis (ICA) where basis vectors are learned from
the mixed signal spectrogram and are grouped using a cross-
entropy matrix. ISA does not work well when the underlying
sources have overlapping bases. Non-negative matrix factoriza-
tion (NMF) [5][6][7] and complex matrix factorization (CMF)
[8][9] are other widely used approaches for SCSS problem.
Authors in [5] attempts to solve this problem by using tem-
poral information while [6] uses sparsity along with the non-
negativity constraints. A discriminative approach for NMF is
proposed in [7] which attempts to minimize the cross-coherence
between the basis vectors pertaining to different sources and
in [10] where the test-time objective for separation is incorpo-
rated in the formulation. The work in [11] and [12] also pro-
pose discriminative model based method where the models for
the underlying sources are learnt in the form of overcomplete
dictionaries. The proposed work in [11] attempts to learn the
dictionaries for all the sources simultaneously rather than as in-
dependent units and [12] learns a sequence of dictionaries and
performs separation in few stages.

1.2. Motivation and contribution

Almost all of the SCSS work has used a joint separation for-
mulation, wherein the two (or more) sources are separated (and
reconstructed) by solving a single optimisation problem. In our
work, we suggest a separate optimisation formulation for ev-
ery source (or component), where to separate one component,
the other component is treated as an interferer. Therefore, for
recovery of each component we train two models, one for the
source and other for the interferer. In effect, we solve as many
optimisation problems as the number of components in the mix-
ture. Since every source is separated by solving its own optimi-
sation problem, the reconstruction quality of the corresponding
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interferer is not relevant. In a way the quality of the separa-
tion of one source can be improved at the cost of the other
source which acts as an interferer. The suggested to-each-its-
own framework performs better than a joint separation frame-
work as the later is burdened with the task of balancing the re-
construction of all the components, unlike our framework.

Given source models like NMF, dictionary, subspace etc,
the source separation performance also depends on choosing the
right parameters like the number of basis vectors of the NMF
matrix and dictionary or the sparsity of the dictionary. In the
NMF based source model a higher number of columns of the
model (NMF basis matrix) implies a better representation of the
given source. But this may also result in the model becoming
a better fit for the interferer as well. Determining an appropri-
ate dimension for the source model thus provides another lever
for the discriminative source separation. Not only the source
model, but the efficacy of the above discussed to-each-its-own
framework is also dependant on the choice of dimension of the
interferer model. To the best of our knowledge, the current liter-
ature does not discuss dimension parameter optimisation as part
of discriminative learning.

Our framework is general enough and can be easily applied
over and above the discriminative NMF, dictionary or subspace
based source models and can improve their separation perfor-
mance. For this paper, we have worked with NMF dictionaries
as in [7] and have improved their performance by determining
better choices for the number of basis vectors and by eventu-
ally separating one source at a time. We show through simula-
tions that our framework on the NMF based source separation
in [7] outperforms other approaches like [11] and [12] for both
speech-speech and speech-music separation tasks.

2. Single channel source separation
In single channel source separation problems, it is required to
recover the underlying signals from one observation i.e., given

y(t) =

L∑

l=1

sl(t) (1)

the estimates of the L signals, ŝl(t), l = 1....L are to be found.
We focus specifically on the case when L = 2. A Short Time
Fourier Transform (STFT) of overlapping frames is applied to
the audio signals which results in the corresponding matrix,
each frame being a column. Let the STFT matrix of the mixed
signal be denoted by Ỹ and S̃1, S̃2 be the STFT matrices of the
underlying signals s1(t), s2(t). The relation between the STFT
matrices is

Ỹ = S̃1 + S̃2 (2)

The magnitude of this matrix represents the spectrogram of the
corresponding signal. The spectrograms so formed are denoted
by uppercase bold letters. Ignoring the phase of the signals, the
spectrogram of the mixed signal is approximated as follows:

Y ≈ S1 + S2 (3)

We first explain the NMF [7] methodology of separation of
sources. Let the NMF dictionaries of the two sources be D1

and D2. Choosing KL-divergence as the error metric to be min-
imised, the NMF framework attempts to separate the sources by
solving the following optimisation problem:

C1,C2 = argmin
C1,C2

DKL(Y ‖
∑

l=1,2

DlCl)

subject to (Dl)ij , (Cl)ij ≥ 0 ∀i, j and l = 1, 2

(4)

The trained models and the estimated coefficient matrix give the
initial estimates of the spectrograms of the two sources.

Ŝ1,init = D1C1, Ŝ2,init = D2C2 (5)

These initial estimates of the spectrograms are used to build
spectral masks from which final estimates of the sources
ŝl(t), l = 1, 2 are made as follows:

ŝl(t) = F−1{Ml ⊗ Ỹ } Ml =
Ŝl,init

Ŝl,init + Ŝm,init

,l �= m (6)

The multiplications and divisions are done element-wise and
F−1{.} denotes the inverse STFT operation.

The optimisation problem (4) essentially solves the prob-
lem of fitting Y onto D = [D1 D2]. Fitting implies any part
of the mixed signal spectrogram Y can be represented by ei-
ther D1 or D2 so long as the total error in reconstruction is
minimised. But the task of separation is different. Separation
requires the signals to get represented dominantly by its own
model. The discriminiative structures are thus to be imposed
during training.

2.1. Parameters for quantifying effective separation

Since, an effective discriminative training is the answer to ef-
fective separation, a natural question to ask is: how do we para-
metrically quantify discrimination? To this end, we define a few
ratio based parameters that naturally quantify the separation that
can be achieved using the models obtained from training. Since
we are interested in recovering only one source at a time from a
mixture, rest of the constituents are treated as “interferers”1. We
denote the source and interferer models by Ds and Dn which
are N × ks and N × kn matrices. We denote the spectrograms
of training data as Ss and Sn which are N × Js and N × Jn

matrices. Here, N is dependent on the FFT size.
When the mixture is composed of only specific source, it

should be represented dominantly by its own model even when
offered a concatenated structure D = [Ds Dn]. In other
words, on projection of a source over D, the ratio of the energy
over its own model to its energy over other source (or interferer)
model should be high. Mathematically:

1. Solving (4) when Y is the source signal Ss.

Css,Csn = argmin
Css,Csn

DKL(Ss‖DsCss +DnCsn)

Ess =‖DsCss ‖F� Esn =‖DnCsn ‖F (7)

Define the source energy ratio rs = Ess
Esn

.

2. Similarly, when Y = Sn, on solving (4),

Cns,Cnn = argmin
Cns,Cnn

DKL(Sn‖DsCns +DnCnn)

Enn =‖DnCnn ‖F� Ens =‖DsCns ‖F (8)

Define the interferer energy ratio rn = Enn
Ens

.

Clearly, a high value of the source energy ratio rs would en-
sure better reconstruction of the source and a similarly, a high
rn is required to promote reduced interference in the recovered
source.

Additionally, the source model Ds must also be a poor rep-
resentation of the interferer. This is required to prevent the inter-
ferer from getting reconstructed by the source model and hence,

1We adopt the to-each-its-own strategy for all the constituents
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to reduce interference in the recovered source. We define an er-
ror ratio re

re =

1
Jn

∑Jn
j=1 ‖sj

n −Dsc
j
ns‖2

1
Js

∑Js
j=1 ‖sj

s −Dsc
j
ss‖2

(9)

where, sj
s, sj

n denote the jth frame (column) of the spectro-
gram of source and interferer respectively and cjss, cjns are the
corresponding co-efficient vector obtained when using Ds to
reconstruct the frames. Although, a high value of rn already
ensures a good representation of the interferer by Dn, having
a high value of re ensures further reduction of the interference
in the source. As we shall see later, we will use re to train the
source model Ds.

Having described the above ratios, we now utilise them to
train better discriminative models by improving upon the dis-
criminative NMF framework in [7]. Specifically, we use the ra-
tio parameters described above to obtain Ds and Dn such that a
certain level of reconstruction accuracy is provided while ensur-
ing that the interference is restricted. Note that our dimension
search framework is general and can be applied to other source
models like dictionary, subspace etc as well. Moreover mak-
ing choice of dimensions as tuneable parameters provides more
freedom in training both source and interferer models. It should
also be noted that an exhaustive search for all possible values
of dimension is computationally infeasible. However, our algo-
rithm potentially only needs few iterations of the discriminative
NMF training.

3. Discriminative NMF algorithm
The discriminative NMF algorithm in [7] trains the models of
the two underlying sources jointly, penalising the coherence be-
tween the models. We rewrite the optimisation problem in [7]

Ds,Dn = argmin
Ds,Dn

DKL(Ss‖DsCss)+

DKL(Sn‖DnCnn) + λ
∑

i,j

(DT
s Dn)ij

(10)

We propose to add the dimension parameters ks and kn for
the models Ds and Dn respectively within our discriminative
training framework. The parameters ks and kn are searched
such that the prefixed ratio parameters re, rs and rn are satis-
fied. In a way these ratios act as constraints over and above the
optimisation problem (10). Unlike [7], we do not train these
models jointly. Instead, we break the optimisation problem into
two parts. We first train the source NMF dictionary Ds such
that error ratio re satisfies a certain threshold rth. Once the
source dictionary Ds is trained, we then follow up with train-
ing the interferer dictionary Dn. The entire process is repeated
after exchanging the roles of the source and interferer to recover
the other source.

3.1. Finding source model Ds and ks

Optimisation problem for finding the source NMF dictionary
Ds, for a fixed source dimension ks is

Ds = argmin
Ds,Css

DKL(Ss‖DsCss) (11)

(11) is solved using multiplicative updates as described below:

Ds ←Ds⊗
Ss

DsCss
CT

ss

1sCT
ss

, Css ← Css ⊗
DT

s
Ss

DsCss

DT
s 1s

(12)

Here, all the multiplication and division operations are done

element-wise. The columns of Ds are normalised after each
iteration. 1s is a matrix of ones with size N × Js. This search
for the dimension ks of the source dictionary is described in
Algorithm 1. Searching for an appropriate ks is essentially
finding that value of ks such that the error ratio re in (9) gets
as close as possible to a predetermined threshold rth. Through
experiments we have observed that the ratio re is generally
monotonically increasing with the dimension variable ks.
Hence a binary search over ks can be performed. For each
value of ks during the search, we solve (11) and then calculate
re. If the threshold is never reached during the binary search,
we repeat the search over ks by lowering the value of the
threshold rth.

Algorithm 1 Dimension search for source model Ds

1: Input: Ss, Sn, rth
2: ks = NULL;
3: while ks == NULL do
4: Binary search for re = rth in ks,min ≤ dimension ≤

ks,max

5: if required ratio found then
6: ks = dimension obtained from binary search;
7: else
8: rth = rth − 0.2;
9: end if

10: end while
11: Solve (11) to train Ds with ks columns
12: Output: Ds

3.2. Finding interferer model Dn and kn

With the given source NMF dictionary Ds, we now determine
the interferer Dn and its dimension kn using ratios rs and rn.
For a given value of the dimension kn, Dn is obtained by

Dn = argmin
Dn,Cnn

DKL(Sn‖DnCnn) + λ
∑

i,j

(DT
s Dn)ij (13)

Here, λ is the regularisation parameter. (13) is solved using
multiplicative updates as described below:

Dn ←Dn ⊗
Sn

DnCnn
CT

nn

1nCT
nn + λDs1̄n

(14)

The columns of Dn are also normalised after each iteration.
1n and 1̄n are matrices of ones with size of 1n being N × Jn

and size of 1̄n being ks × kn. The update of Cnn is similar
to the update of Css. A search for an appropriate dimension of
the interferer model Dn is carried out using the ratios rs and
rn and we need to ensure both are high. A high value of rs
implies a good reconstruction of the source, while a high value
of rn implies lesser interference. But clearly, there would be a
trade-off between these two ratios. To reduce the interference
in the source, rn should be increased but that would also tend
to decrease rs thereby leading to a poorer reconstruction of the
source. So, dimension of the model of interferer Dn is set that
the value of rn falls within a good range so long as rs does
not fall below a certain minimum value. Algorithm 2 describes
the dimension search for the model of the interferer. Once the
models are trained, equations (4)-(6) (replacing D1 with Ds

and D2 with Dn) are used to find the estimate of the source
signal ŝs(t).
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Algorithm 2 Dimension search for interferer model Dn

1: Input: Ds, Sn

2: kn = kn,min; in = 1; {Indicator for search}
3: while in == 1 do
4: Solve (13) to find Dn with kn columns
5: Find the ratios rs and rn
6: if rs ≥ rs,min and rn ≤ rn,max then
7: kn = kn + 5;
8: else
9: in = 0;

10: end if
11: end while
12: Output: Dn

4. Results and discussion
4.1. Data

The algorithm was tested for separation of two speech signals
and speech-music signals. For the speech case, the algorithm
was evaluated on 4 male and 4 female speakers taken from the
TIMIT 16k database [13] which has 10 sentences per speaker.
9 sentences were used for training and one was for testing.
The music data was taken from the piano society website [14].
Around 1.5 minutes of data is used for training and another clip
from the same artist was used for testing. The mixed signal was
formed by adding two signals at a signal to signal ratio of 0 dB.
Framing of the signals was done using a Hamming window of
length 512 with 75% overlap and a 512 point FFT was taken.

4.2. Parameters

A small dimension for either of the models Ds and Dn will
hamper the recovery of the source signal. ks when kept too
small will lead to a poor reconstruction of the source and a small
value for kn will lead to more interference in the source and so,
small values for both the models are avoided. The values of
ks,min and kn,min are fixed to be 20 while ks,max is taken to
be 60. Experiments have shown that rth � 3 is a good value
while separating speech files. Also, re attains higher values
while separation of speech and music files and so the threshold
was fixed at 6 in speech-music case. The value of rs,min is fixed
at 4 and the value of rn,max is 30 respectively. Increasing the
value of rs,min will give a better reconstruction of the source
but will increase the interference in it. λ is fixed at 100.

4.3. Performance of our algorithm

Our experiments show that incorporation of dimension search in
the training process and separation of individual sources signifi-
cantly improves the separation for both the sources. We applied
our framework on NMF dictionaries as in [7], here referred to as
RNMF which solves (10). We term our method of application of
the discriminative framework on NMF dictionaries as DF-NMF.
Results show that the quality of separation can be improved with
the framework. We also compare our results with the dictionary
learning based approach in [12], called SDDL, which extracts
the sources in a number of levels to achieve better separation.
We compared the performances of the algorithms using SDR
and SIR as the evaluation metrics. The BSS evaluation toolbox
[15] was used for calculation of the evaluation metrics. Fig-
ure 1 show the comparison of SDR for a few speech-speech
separation trials while figure 2 show the comparison for a few
speech-music cases. For speech-speech case, a total of 18 trials

were performed, 6 for each case: F+M, F+F and M+M where F
refers to female and M refers to male speaker. In case of speech-
music, 10 speakers including male and female were used. Ta-
bles 1 and 2 compare the average performance of the algorithms
in speech separation and speech-music separation respectively.

1 1.5 2 2.5 3 3.5 4 4.5 5
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DF-NMF
RNMF
SDDL

+-Speaker1,*-Speaker2

Figure 1: Comparison for speech-speech case

1 1.5 2 2.5 3 3.5 4 4.5 5

pair no.

1

2

3

4

5

6

7

8

9

10

SD
R

Speech-Music

DF-NMF
RNMF
SDDL

+-Speech,*-Music

Figure 2: Comparison for speech-music case

DF-NMF RNMF[7] SDDL[12]

F+M
SDR 6.46 5.6 5.82
SIR 8.57 7.01 8.49

F+F
SDR 4.52 3.78 2.38
SIR 6.45 4.95 5.31

M+M
SDR 3.95 3.56 2.17
SIR 5.82 4.65 4.68

Table 1: Average performance for speech-speech separation

DF-NMF RNMF[7] SDDL[12]

Speech
SDR 7.32 6.2 3.06
SIR 10.23 13.88 6.05

Music
SDR 5.04 2.78 2.85
SIR 6.66 3.2 5.53

Table 2: Average performance for speech-music separation

5. Conclusions
We present a new discriminative framework for the SCSS prob-
lem where we suggest an individual optimisation problem for
every component of the mixture, while simultaneously search-
ing for an appropriate dimension for the source models as part
of their training. We applied our framework on the NMF dic-
tionaries and through experiments show that our method im-
proves the separation performance compared to other existing
approaches. Our approach also opens up the possibility of find-
ing theoretical guarantees in source separation.
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