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Abstract
Speech emotion recognition is an important problem with ap-
plications as varied as human-computer interfaces and affec-
tive computing. Previous approaches to emotion recognition
have mostly focused on extraction of carefully engineered fea-
tures and have trained simple classifiers for the emotion task.
There has been limited effort at representation learning for af-
fect recognition, where features are learnt directly from the sig-
nal waveform or spectrum. Prior work also does not investigate
the effect of transfer learning from affective attributes such as
valence and activation to categorical emotions. In this paper,
we investigate emotion recognition from spectrogram features
extracted from the speech and glottal flow signals; spectrogram
encoding is performed by a stacked autoencoder and an RNN
(Recurrent Neural Network) is used for classification of four
primary emotions. We perform two experiments to improve
RNN training : (1) Representation Learning - Model training
on the glottal flow signal to investigate the effect of speaker
and phonetic invariant features on classification performance
(2) Transfer Learning - RNN training on valence and activa-
tion, which is adapted to a four emotion classification task. On
the USC-IEMOCAP dataset, our proposed approach achieves a
performance comparable to the state of the art speech emotion
recognition systems.
Index Terms: speech emotion classification, human-computer
interaction, computational paralinguistics

1. Introduction
The field of speech emotion recognition has several poten-
tial applications, from affective computing to human-computer
interfaces, and has witnessed considerable progress recently,
partly due to newer datasets recorded with larger number of
subjects and improved acquisition technology. Most existing
approaches rely on the extraction of standard acoustic features
such as pitch, shimmer, jitter and MFCCs (Mel-Frequency Cep-
stral Coefficients). Temporal characteristics of the data are ob-
tained with statistical functionals which are used as descrip-
tors for segment or utterance-level detection of emotions from
speech [1]. Feature extraction is followed by a simple classi-
fication stage, with models such as Support Vector Machines
(SVM) and Hidden Markov Models (HMM).

There is little effort in obtaining an effective end-to-end rep-
resentation learning pipeline for speech emotion recognition,
where the spectrogram or the time domain waveform are uti-
lized for training a subsequent neural network. One important
advantage of representation learning [2] is that features describ-
ing the signal are learnt directly from the waveform samples or

from the frequency domain representation. This does not re-
quire any additional feature extraction, and often generalizes
well to unseen data. Moreover, high data collection and anno-
tation costs often necessitate experiments on limited amounts
of labeled data with few human subjects. Different training
paradigms such as semi-supervised learning [3] and transfer
learning [4] have been reported to improve classification accu-
racy, but have not been extensively explored for emotion classi-
fication or affect recognition from speech.

In this paper, we explore spectrogram based representations
for speech emotion classification from the USC-IEMOCAP
dataset. We experiment with features from the speech spec-
trogram, but also from the glottal volume velocity spectro-
gram. Our experiments investigate if classification performance
can be improved by filtering out unwanted factors of variation
such as speaker identity and verbal content (phonemes) from
speech. The frame-based feature representations are obtained
by training stacked denoising autoencoders from context win-
dows of spectrograms, and then we learn an utterance-level
emotion Bidirectional Long-Short Term Memory (BSLTM)-
RNN model. We also study a transfer learning scenario where
we leverage additional utterances which have not been labeled
with four basic emotions by training an RNN on the valence and
activation labels (which comprises all utterances in the dataset),
and then adapting the trained network to the four emotion clas-
sification task. The primary research questions we wish to in-
vestigate in the paper are:
Question 1: Are representations learned from spectrograms
successfully discriminative for speech emotion recognition?
Question 2: Do speaker and phonetic invariant representations
improve emotion classification accuracy? Do they improve on
recognizing emotions which are commonly confused [5] due to
similar voice characteristics?
Question 3: Can data insufficiency be addressed by transfer
learning from affective attributes such as valence and activation
to emotions?

2. Related Work
Our experiments in this paper build on prior work in the areas
of representation learning and deep neural networks, as well as
emotion and affect recognition from speech. Jaitly and Hin-
ton [6] proposed transforming autoencoders to learn acoustic
events (onset times and rates) from speech datasets such as Arc-
tic and TIMIT. Graves et al [7] explored recurrent neural net-
works for speech recognition, obtaining a test set error of 17.7%
on TIMIT. Deep learning approaches have also been applied to
emotion recognition from speech. Kim et al [8] explored multi-
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modal deep learning for audiovisual emotion recognition from
the IEMOCAP dataset. Han et al [9] performed speech emotion
recognition from the IEMOCAP corpus using a combination of
DNN (Deep Neural Network) and Extreme Learning Machines.
They obtained 20% relative accuracy improvement compared to
state-of-the-art approaches.

Lee et al [10] trained recurrent neural networks for speech
emotion recognition from IEMOCAP, where the label of each
frame is modeled as a sequence of random variables. They ob-
tained a weighted accuracy improvement of 12% compared to a
DNN-ELM baseline. Jin et al [11] generated feature represen-
tations using standard acoustic and lexical features for emotion
recognition from IEMOCAP, obtaining 55.4% accuracy from
early fusion of acoustic features (cepstrum and Gaussian super-
vectors). Trigeorgis et al [12] perform representation learning
for end-to-end speech emotion recognition. The present work
complements these prior investigations by learning represen-
tations for emotion recognition from spectrograms. We have
previously explored unsupervised speech representations for af-
fect [13], and in this work further investigate if speaker and pho-
netic invariant representations of speech are discriminative of
emotion, and whether transfer learning from affective attributes
to categorical emotions can improve classification performance.

3. Model
3.1. Pretraining with Stacked Denoising Autoencoders

An autoencoder [14] is a neural network typically trained to
learn a lower-dimensional distributed representation of the in-
put data. The input dataset of N data points {xi}i=N

i=1 is
passed into a feedforward neural network of one hidden layer
which is a bottleneck with activations {yi}i=N

i=1 given by yi =
tanh (Wxi + b). We use tanh activation functions in our
work. The output of the autoencoder is zi = W′yi + b′ and
is generated from the bottleneck layer. Thus the autoencoder
is trained using backpropagation, much as in an ordinary feed-
forward neural network. We use SSE (Sum of Squared Error
Loss) L =

∑i=N
i=1 ‖xi − zi‖2 for training in this paper. Vin-

cent et al [15] introduce denoising autoencoders, where the data
point xi is corrupted (by randomly setting a fraction of the ele-
ments to zero) to produce the input x̃i, from which the original
clean data point xi is set to target zi and is reconstructed by
the autoencoder. When training denoising autoencoders in a
greedy stacked fashion, we have multiple layers with weights
Wk−1 and Wk for the k-th hidden layer, where the autoen-
coder activations at the layer are (where we have y0

i = x̃i)
yk
i = tanh (Wk−1yk−1

i + bk−1). Similar to most prior work
[16], we used a pyramidal stacking approach for the autoen-
coders, where the number of neurons is less (generally halved)
for the next higher layer. We have kept the same autoencoder
output layer size for all feature sets to enable a fair comparison.

3.2. Classification with BLSTM-RNN

Recurrent Neural Networks (RNN) are suitable for learning
time series data. While RNN models are effective at learn-
ing temporal correlations, they suffer from the vanishing gra-
dient problem which increases with the length of the train-
ing sequences. To resolve this problem, LSTM (Long Short
Term Memory) RNNs were proposed by Hochreiter et al [17]
to model long term temporal dependencies. In our paper, we
use BLSTM (Bidirectional LSTM)-RNNs for sequence clas-
sification with a target replication scheme, where the target
class for each time step is assigned to the emotion category

of the entire utterance. For prediction of an input sequence
{x1,x2,x3, ...,xT } the predicted emotion category is obtained
by a majority voting scheme on the predictions of individual
time steps in the sequence, which correspond to context frames
in the utterance. The BLSTM-RNN has two layers, each of
cell size 30, with a four-dimensional softmax layer on top for
emotion classification. We perform validation experiments on
the RNN to find the best model, where each hyper-parameter
setting is obtained from random sampling on the grid below:
• Learning Rate : [6e-6,8e-6,1e-5,2e-5,4e-5]
• Momentum : [0.7,0.8,0.9]
• Input noise variance : [0.0,0.1,0.2,0.3]
• Weight noise variance : [0.0,0.05,0.1,0.15,0.2]
• Batch size: 1300 utterances
• Maximum Epochs : 100
To improve generalizability of the BLSTM, random noise is
added to the input sequences and the model weights in every
epoch, and can be controlled by the noise variance hyperparam-
eters. We have used the BLSTM-RNN implementation from the
CURRENNT toolbox [18].

4. Dataset and Feature Extraction
For our experiments, we used the USC-IEMOCAP dataset [19],
which is a well-known dataset for speech emotion recognition
comprising of acted and spontaneous multimodal interactions
of dyadic sessions between actors, where conversations are
scripted as well as improvised. The dataset consists of around
12 hours of speech from 10 human subjects, and is labeled by
three annotators for emotions such as Happy, Sad, Angry, Ex-
citement, Neutral and Surprise, along with dimensional labels
such as Valence and Activation.

We perform classification experiments only on four basic
emotions - Neutral, Angry, Sad and Happy, with a total of 5531
utterances belonging to these categories (Happy: 1636 Angry:
1103 Sad: 1084 Neutral: 1708). These standard emotion cat-
egories were chosen since they are most commonly used for
emotion recognition from the IEMOCAP dataset [8], [11]. Each
utterance is approximately 2-5 seconds in duration, with short
periods of silence before and after speech in all utterances. The
affective dimensions (valence, activation and dominance) are
annotated on a Likert scale of 1-5, where we have averaged
out the dimension ratings across all three annotators. We are
also interested in analyzing the performance of our proposed
approach over improvisational utterances from the dataset. Im-
provisational utterances correspond to conversations not gener-
ated from a predefined script and are hence more spontaneous
and similar to natural speech.

4.1. Glottal Source Waveform

Paralinguistic and affective attributes such as emotion, valence
and activation should be speaker and phonetic invariant, and
not sensitive to changes in the speaker’s identity or verbal con-
tent (phoneme or words being uttered). We wish to investigate
whether filtering out the factors of variation (speaker identity
and phonetic information) from the speech signal prior to train-
ing of the denoising autoencoder and the BLSTM-RNN could
improve classification performance. The glottal source wave-
form has this property and is obtained by glottal inverse filtering
of the speech signal using the Iterative Adaptive Inverse Filter-
ing (IAIF) algorithm [20]. While the signal obtained through
inverse filtering may be an approximate of the actual glottal
waveform and potentially result in experimental bias, we have
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chosen the IAIF algorithm because it is widely used in the lit-
erature. Besides, we are also motivated by the recent success
of glottal flow based features such as Normalized Open Quo-
tient (NAQ), and Quasi-open Quotient (QOQ), which have been
shown to be discriminative at tasks such as depression assess-
ment [21], and voice quality classification [22].

Figure 1: Experimental setup for emotion recognition

4.2. Spectrogram Representations

Spectrograms were extracted from both (1) the speech wave-
forms and (2) glottal flow waveforms. We used a frame width
of 20 ms and a frame overlap of 10 ms for extraction. The spec-
trograms consist of 128 FFT (Fast Fourier Transform) bins for
each frame and we subsequently stack a context window of five
adjacent frames together (resulting in a 640-dimensional vector)
to better capture contextual information. The 640-dimensional
feature vectors are input to the stacked autoencoder which has
an architecture of 640-320-160-64. This is motivated by prior
work [23],[24] which report that longer temporal context im-
proves emotion classification performance. We used a log-scale
in the frequency domain, since a higher emphasis in lower fre-
quencies has been shown to be more significant for auditory
perception.

4.3. Baseline Feature Extraction

For the baseline approach, we extract commonly used speech
features for affect recognition, such as Mel-Frequency Cepstral
Coefficients (MFCCs) and prosodic/voice quality features [22]
from the COVAREP toolbox [25] version 1.4.1. The reader is
requested to refer to [26] for a detailed description of the fea-
tures, which include F0 (Fundamental Frequency), NAQ (Nor-
malized Amplitude Quotient), QOQ (Quasi-open Quotient) and
MFCCs with delta coefficients. A context window vector of size
175 is created by stacking 35 COVAREP feature vectors from
five adjacent frames, and are input to a stacked autoencoder with
an architecture of 175-64.

5. Experimental Setup
The utterances in the IEMOCAP dataset are split into five ses-
sions, where each session consists of a dyadic conversation
between a male and a female speaker. The experiments in
our paper are performed in a leave one session out strategy,
similar to [10]. Since there are 10 speakers in the dataset,
each session consists of 2 speakers. For each fold, utterances
from eight speakers (four sessions) correspond to the train-
ing set, and from the remaining session, hyper-parameter val-
idation is performed on one speaker, testing is performed on
the other speaker, and vice-versa. We have reported weighted
and unweighted classification accuracy for the entire testing set
(scripted+improvised) and a subset consisting only of impro-
vised utterances. Weighted accuracy is the accuracy over all

testing utterances in the dataset, and unweighted accuracy is the
average accuracy over each emotion category (Happy, Angry,
Sad and Neutral).

For each session, stacked autoencoder pretraining is per-
formed over all training set utterances. The BLSTM-RNN train-
ing for the emotion classification task is done only for utterances
which have been labeled with the primary emotion categories.
Refer to Figure 1 for a pictorial overview of our approach. We
compare our proposed approach to the following baselines :
(1) The DNN-ELM approach in [9] where the authors train a
Deep Neural Network (DNN) with an ELM (Extreme Learning
Machine).
(2) The RNN-ELM approach in [10] where the authors train
a Recurrent Neural Network (RNN) with an ELM (Extreme
Learning Machine).
(3) Jin et al. [11] where acoustic and lexical features are fused
to create higher level representations. They also use standard
features, along with techniques such as BoW (Bag of Words
Modeling). For fairness of comparison we report their results
obtained with acoustic features.
(4) Our proposed model, where we extract features from the
COVAREP toolbox and stack them to create context window
descriptors of five frames, instead of obtaining spectrogram rep-
resentations.
Transfer Learning Valence and Activation to Emotions: In our
paper, we perform classification experiments on four categories
of emotion - Happy, Angry, Sad and Neutral. However, 4328
utterances in the IEMOCAP dataset are annotated with valence
and activation intensities, even though they do not belong to the
four primary emotion categories. The correlation of affective
dimensions and emotion categories has been extensively stud-
ied in the literature [27], and we wish to investigate if features
which are representation learned for the task of affective dimen-
sion regression are also discriminative of emotion classification.

For each utterance in the dataset, we obtain an aggregate
score for the valence and activation dimensions by averaging
all the annotator ratings, and train a BLSTM-RNN network
as a regression model. Similar to emotion classification, we
replicate the targets at every timestep, where each target is a
two dimensional vector consisting of the valence and activation
score for the utterance. The network architecture is identical to
the BLSTM classifier, with the exception of a two-dimensional
feedforward linear unit in the topmost layer. The SSE (Sum
of Squared Errors) is used for training the network, and subse-
quently the top layer is replaced with a softmax layer. Training
is resumed in the adaptation stage, where instead of the valence
and activation, the target is an emotion label belonging to one
of the four basic emotion categories. Transfer learning not only
enables the RNN to make use of additional unlabeled data, but
also provides us an insight into the correlation between emo-
tions and affective dimensions.

6. Results and Discussions
As described in the previous sections, we conduct classifica-
tion experiments to compare the performance of representations
learned from the speech and glottal flow spectrograms with (1)
state-of-the-art baselines [9], [10] and [11] (2) acoustic and
voice quality features extracted using the COVAREP toolbox
[25]. In Table 1, we present test accuracies in the leave-one-
session-out setup for different emotions and feature sets. From
an examination of the results, we observe that Happy and An-
gry classes frequently are confused in the classification, while
highest performance is achieved for the Sad category.
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Table 1: Test Accuracies reported for different feature sets on overall (improvised+scripted) and improvised utterances. Results for
our proposed approach are shown in bold

Utterance Category Feature Set Weighted Unweighted Happy Angry Sad Neutral
Overall COVAREP 48.19 50.26 36.13 56.98 65.57 42.38

Spectrogram (Speech) 48.70 49.75 35.15 43.16 67.13 53.57
Spectrogram (Glottal) 50.47 51.86 36.98 53.58 64.27 52.63

Improvised COVAREP 49.64 51.84 38.47 58.50 66.05 44.35
Spectrogram (Speech) 51.94 51.85 39.60 42.91 69.85 55.05
Spectrogram (Glottal) 52.82 54.56 44.24 56.06 65.73 52.23

Representation learning from spectrograms: In [10], the au-
thors report the best unweighted and weighted accuracies ob-
tained by the DNN-ELM model to be 52.13% and 57.91% re-
spectively. The corresponding performances obtained by their
proposed RNN model (without ELM) are around 56% and 58%
respectively, which are comparable to our accuracies. In [10]
it is not clearly specified which speaker in each session was
used for validation and testing respectively. In our experiments,
we select one speaker for validation and one for testing. We
then repeat the experiment with the speakers switched and in-
clude the average performance of both test sets in our evalu-
ation. The RNN-ELM approach in [10] also trains and tests
only on improvised utterances, whereas our approach trains on
both improvised as well as scripted utterances. The acoustic fu-
sion approach in [11] report 10 fold leave-one-speaker-out val-
idation accuracies on all utterances (scripted as well as impro-
vised), but do not explicitly evaluate on a testing set. The per-
formances they report (weighted accuracy of 49% for cepstral
BoW to 55.4% for feature fusion) are comparable to the valida-
tion accuracy of 57% which we obtain in the leave-one-session-
out scenario. These findings show that emotion categories can
be directly learned from low-level spectrogram representations.
Speaker and Phonetic Invariance: The representations ob-
tained from the glottal flow signal outperform those obtained
from the speech signal by 1.77% in terms of weighted accuracy,
which shows that it is beneficial to filter out factors of varia-
tion such as speaker identity and phonetic information from the
speech prior to emotion classification. To examine the differ-
ence in greater detail between the performances of the glottal
and speech representations, we present both confusion matrices
obtained by testing on all utterances in Figure 2. Each row of
the tables consists of the fraction of the ground truth emotion la-
beled utterances which have been confused with other emotions
during prediction. We observe that glottal flow representations
reduce the confusion between Happy and Angry categories to a
major extent. This improves their respective classification ac-
curacies by 1.8% (for Happy) and 10.4% (for Angry). We be-
lieve that this improvement stems from the fact that as reported
in [5], Happy and Angry have similar acoustic characteristics.
Further, they share a similar level of activation when consid-
ering their location in the valence-activation space. We believe
that glottal flow representations are less prone to confuse Happy
and Angry, as they capture differences on the valence dimension
better. Based on these findings we can confirm research ques-
tion 2 and conclude that representations learned from speech
can be improved by filtering speaker and phonetic factors of
variation prior to classification.
Transfer Learning: To address research question 3, we pre-
train the BLSTM-RNN as a regression model for valence and
activation on the entire training set (for four sessions in each
fold), and subsequently finetune it for the four category emotion
recognition task. We found that it was necessary to scale down

Hap Ang Sad Neu
Hap 35.1 24.9 14.4 25.4
Ang 35.7 43.1 3.9 17.2
Sad 7.0 2.8 67.1 23.0
Neu 20.0 6.5 19.8 53.5

(a) Speech confusion matrix

Hap Ang Sad Neu
Hap 36.9 18.5 15.1 29.2
Ang 24.2 53.5 4.2 17.9
Sad 8.3 2.5 64.27 24.9
Neu 20.8 4.5 22.0 52.6

(b) Glottal confusion matrix

Figure 2: Confusion matrices obtained for speech and glottal
representations

the BLSTM weights inside the pretrained network to improve
performance on the adaptation task. Further for finetuning, the
hyper-parameters also have to be validated over a grid similar to
the setting described in Section 3.2. Since the glottal flow spec-
trogram performs the best among the competing feature sets,
we conduct the transfer learning experiment only on the glot-
tal flow representations. We obtained a weighted accuracy of
51.64% and an unweighted accuracy of 52.89% on the test set,
with emotion wise accuracies of 38.03% (Happy), 55.40% (An-
gry), 67.35% (Sad) and 50.81% (Neutral). While the transfer
learned representations achieve an improvement of 1.17% and
1.03% in weighted and unweighted accuracies respectively, it is
not a significant boost compared to directly learning categorical
emotions from the glottal flow representations.

7. Conclusions
In this paper, we have investigated representation learning
for categorical emotion recognition from spectrograms of the
speech and glottal flow signals. Our experiments indicate
that representation learned features are highly discriminative of
emotion classification and are comparable to state-of-the-art ap-
proaches. We also find that filtering out speaker and phonetic in-
formation by inverse filtering reduces confusion between Happy
and Angry categories, and that transfer learning from valence
and activation to emotion categories provides a marginal im-
provement in performance. Overall, we believe our findings are
encouraging, in particular with respect to potential performance
improvement in a multi-classifier system due to the diversity in
observed errors. In addition, we plan to explore more extensive
transfer learning experiments with much larger datasets.
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