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Abstract
This paper documents the significant components of a state-of-
the-art language-independent query-by-example spoken term 
detection system designed for the Query by Example Search 
on Speech Task (QUESST) in MediaEval 2015. We developed 
exact and partial matching DTW systems, and WFST based 
symbolic search systems to handle different types of search 
queries. To handle the noisy and reverberant speech in the 
task, we trained tokenizers using data augmented with 
different noise and reverberation conditions. Our post-
evaluation analysis showed that the phone boundary label 
provided by the improved tokenizers brings more accurate 
speech activity detection in DTW systems. We argue that 
acoustic condition mismatch is possibly a more important 
factor than language mismatch for obtaining consistent gain 
from stacked bottleneck features. Our post-evaluation system, 
involving a smaller number of component systems, can 
outperform our submitted systems, which performed the best 
for the task. 
Index Terms: Data augmentation, bottleneck features, 
dynamic time warping, symbolic search, partial matching 

1. Introduction 
Query-by-example spoken term detection (QbE-STD) refers to 
the task of finding the occurrences of a spoken query in an 
audio archive. This task does not necessarily require the 
linguistic knowledge and transcribed data of the target 
language, and it has gained the interest of the research 
community in recent years. The query-by-example search on 
speech task (QUESST) (and formerly the spoken web search 
task), which has been held in recent MediaEval evaluation 
campaigns and  provided suitable benchmarks for the 
development of QbE-STD,  is also one of the driving forces of 
this research direction. 

The QUESST 2015 dataset [1], similar to last year, 
consists of speech from heterogeneous sources in multiple 
languages. The major challenge of the QUESST 2015 is the 
presence of noise and reverberations in the dataset. The 
popular approach to QbE-STD is acoustic pattern matching 
based on variants of dynamic time warping (DTW) [2, 3]. 
Posterior features or bottleneck features from neural networks 
trained using mismatched languages, and fusion of multiple 
systems are usually used in top-performing systems [4-10]. 
Unsupervised acoustic modeling or feature extraction has been 
studied in [11-14] to deal with the lack of knowledge about 

target data. Partial matching techniques [15-17] have been 
developed to deal with different kinds of query matches for the 
QUESST 2014. 

This paper summarizes the significant components of our 
system for the QUESST 2015, and present the post-evaluation 
effort devoted to improve our system. To address the noise and 
reverberations in the QUESST 2015 data, training tokenizers 
with data augmentation was attempted in our submitted system 
[10]. Its aim is to make the tokenizers to have better coverage 
of various acoustic conditions in the QUESST data. Our post-
evaluation effort was firstly devoted to training of tokenizers 
with better data augmentation, and then we revisited some 
major techniques, including speech activity detection (SAD) 
and the search backends, with the features from the improved 
tokenizers. The better data augmentation was achieved by 
augmenting the training data with different types of noises 
from the NOISEX-92 corpus [18] and reverberations 
synthesized by room impulse response. 

In the post-evaluation analysis, when the tokenizers were 
trained with the improved data augmentation method, we 
investigated its interaction with a number of major 
components, and a number of observations are highlighted as 
follows. 
� The phone boundary label provided by the improved 

DNN tokenizers brings more accurate speech activity 
detection in DTW systems, and this eliminates the use of 
multiple detectors in our submitted system. 

� The bottleneck features (referred to as stacked bottleneck 
features) extracted from the second-level network of a 
stacked hierarchical neural network [19] can consistently 
outperform the bottleneck features from the first-level 
network; Although it is not surprising in speech 
recognition with an expected test condition [20], it is, to 
our best knowledge, the first reported result in QbE-STD 
on multiple languages. In the experiments on other data, 
we observe that the longer temporal context brought by 
stacked bottleneck features do not necessarily bring 
improvement. We argue that acoustic condition mismatch 
is possibly a more important factor than language 
mismatch for obtaining consistent gain from stacked 
bottleneck features. 

� The post-evaluation system with four component systems 
outperforms our submitted system, which consisted of 66 
component systems and performed the best among all the 
QUESST 2015 teams. 
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2. Evaluation corpus and task 
The QUESST 2015 dataset is collected from multiple 
languages (including Albanian, Czech, Singaporean Mandarin 
Chinese mixed with Singaporean English, Portuguese, 
Romanian and Slovak) and sources with different recording 
environments and speaking styles. It consists of around 18 
hours of audio, 445 development (dev) queries and 447 
evaluation (eval) queries. Noise (collected from 
https://www.freesound.org) and reverberations are artificially 
added to the dataset. For details, please refer to the QUESST 
2015’s evaluation specification [1]. 

The task requires the detection systems to return the 
following three types of matches: 1) exact match (T1) in 
which the query is read speech; 2) partial match (T2) which 
allows reordering and small lexical variation between query 
and test utterances, and in which the query is dictated speech; 
3) partial match (T3) which allows reordering and small 
lexical variation between query and test utterances, and in 
which the query is conversational speech. For each query, no 
prior information regarding the spoken language or the type of 
matches involved is available to the detection systems. 

System performance is evaluated using normalized cross 
entropy (Cnxe) and term weighted value (TWV). Smaller 
values of Cnxe and larger values of TWV indicate better 
performance. 

3. Overview of our submitted system  
Our submitted system involves dynamic time warping (DTW) 
and symbolic search based backends similar to our submitted 
system [8] for QUESST 2014. However, to address the more 
challenging acoustic and noise conditions of the data in 
QUESST 2015, we attempted to estimate noise in the data 
using the techniques in [21-23], and added the noise to a 
portion of training data of some tokenizers. We also used a 
large number of tokenizers trained using different speech 
corpora, two speech activity detectors. The DNN models 
which were used as bottleneck feature extractors and phone 
recognizers were trained using the Kaldi toolkit. For detail, 
please refer to our system description [10]. 

3.1. DTW systems 
Bottleneck features (BNF), stacked bottleneck features 
(SBNF) and phoneme-state posterior features were mainly 
used in our DTW systems. Exact matching and partial 
matching DTW systems were developed to deal with different 
types of queries. We used two speech activity detectors, 
including frequency band energy based SAD [23] and 
statistical model based SAD [24], to remove non-speech 
frames in utterances. It was because we found that they 
performed the best in different types of queries in DTW 
systems. 

An exact matching system matched each query with a 
subsequence of a test utterance using subsequence DTW [3]. It 
found a path on the cosine distance matrix of the speech 
features of the query and the test utterance. The system output 
the similarity score between the query and the matched 
subsequence of the test utterance. 

Our partial matching DTW systems, including fixed-
window [8, 16] and phoneme-sequence [17] partial matching 
systems, were used to deal with T2 and T3 queries. In each 
fixed-window partial matching system, an analysis window 

between 70 and 90 frames long was defined. When the 
window was shifted between 5 and 10 frames in each step, a 
query segment from the analysis window was matched with a 
test utterance. The highest similarity score which 
corresponded to a query segment and the test utterance was 
used as the score of the query-utterance pair of the system. In 
phoneme-sequence approximate matching systems, the size of 
the window was determined by the phoneme boundary 
information derived from phoneme recognizers. The window 
size was set to 8 phonemes, as it provided best results on the 
development data. 

3.2. WFST-based symbolic search systems 
Weighted finite state transducer (WFST) based symbolic 
search systems were used to deal with T2 and T3 queries [8, 
16]. Such systems decoded a query utterance into N-best 
phone sequences, and the partial phone sequences were 
extracted and converted to WFST format. The phoneme lattice 
of search utterances was converted into timed factor 
transducer [27]. The search was performed by the composition 
of query and search audio WFSTs. Although symbolic search 
systems do not perform as good as DTW systems for partial 
matching, it allows indexing of the search utterances and 
facilities fast search. 

4. Post-evaluation system and analysis 
In post-evaluation analysis, we kept the overall architecture of 
our system, which is based on DTW search and WSFT 
symbolic search, while the data augmentation method was 
revised and the total number of component systems was 
greatly reduced. When the revised data augmentation method 
was used, we observed that the tokenizers could give better 
SAD using its phone-level decoding, and this eliminated 
multiple component systems using different SAD in our 
submitted system. 

Only SBNFs were used in the DTW systems of our post-
evaluation system. We trained SBNF extractors using stacked 
hierarchical networks. The first-stage network took filterbank 
and pitch features as input. The first-stage and the second-
stage networks had the topology of 1500-1500-80-1500-x, and 
1500-1500-40-1500-x respectively, where x is the number of 
senones (around 400 in different tokenizers). 

We also used fewer speech corpora, including 
Switchboard English (LDC97S62) and Fisher Spanish (LDC 
LDC2010S01), to train tokenizers; they performed better than 
tokenizers trained using other corpora. We performed the 
fusion of 4 component systems to achieve the performance 
that is better than our submitted system for the evaluation. 

4.1. Data augmentation 
In our submitted system, we extracted the noise segments in 
the evaluation data and augmented them to the data for 
training a tokenizer. Although performance improvement (4% 
relative improvement in exact matching system for T1 dev 
queries) was observed by this method [10], we noted that the 
effect of reverberations was not considered and the newly 
trained tokenizer was only targeted to the noise condition in 
the QUESST 2015.  

To address these issues, we augmented the original 
training data with different reverberation and noise conditions. 
Firstly we convolved the original training data of the 
tokenizers with room impulse responses, which were 
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artificially generated using the image model [28]. Three room 
sizes, including small, medium and large, were considered. 
Two speaker-to-microphone distances, including 1.5 meters 
and 3 meters, were used. Reverberation time T60 was 
randomly chosen between 0.1 sec and 1.0 sec. After an 
original training utterance was convolved with a RIR, additive 
noise with signal-to-noise ratio (SNR) randomly selected 
between 0dB and 50dB was added. Totally 15 types of 
additive noises samples from the NOISEX-92 database [18] 
were used to contaminate the utterance. For each original 
utterance, its RIR and noise sample were randomly selected. 
Finally each tokenizer was trained using the double amount of 
training data (the original data and the data contaminated with 
different reverberation and noise conditions). 

We also observed that when a phone recognizer was 
trained with data augmentation, the phone recognizer could 
bring more accurate phone boundary for speech activity 
detection. It was used to remove non-speech frames in query 
utterances for DTW search because we expected the non-
speech frames do not help the search of spoken words in the 
query utterances. 

Table 1 shows the improvement of an exact matching 
DTW system, in which the Switchboard SBNF extractor was 
used and it was trained with the revised data augmentation 
procedures. When the spectral energy based SAD is used to 
drop non-speech frames, the SBNF can bring 10% relative 
improvement (from 0.758 to 0.684) in minCnxe for T1 
queries. If a phone recognizer trained using the Switchboard 
corpus with data augmentation is used to perform SAD, we 
can further obtain 9% relative improvement (to 0.621) in 
minCnxe. We also observed similar improvements in other 
tokenizers and partial matching DTW systems [17]. 
  

Table 1. Effect of SAD and data augmentation on QUESST 
2015 dev set. 

SAD With data 
augmentation? 

minCnxe/maxTWV 
T1 queries all queries 

No No  0.812 / 0.158 0.909 / 0.084 
Spectral 
energy 
based 

No 0.758 / 0.234 0.889 / 0.114 

Spectral 
energy 
based 

Yes in SBNF 0.684 / 0.326 0.847 / 0.167 

Time label 
from 

phoneme  
recognizer 

Yes in SBNF 
and SAD 0.621 / 0.412 0.827 / 0.214 

 
To ensure whether the data augmentation hurt the clean 

spoken queries, we further analyzed the improvement for clean 
utterances and all utterances. Surprisingly, we found that 
improvement obtained in clean T1 utterances is comparable 
with the improvement in T1 queries. Perhaps the “clean” 
utterances (without artificial noise and reverberations) 
originally contains certain noise or/and reverberations. 
 

Table 2. Effect of data augmentation on QUESST 2014 dev 
set. Exact matching DTW system with Switchboard SBNF is 
used. No artificially noise and reverberations in this dataset. 

With data augmentation?
minCnxe/maxTWV 

T1 queries all queries 
No  0.747 / 0.309 0.854 / 0.183 
Yes 0.740 / 0.312 0.851 / 0.187 

 
Moreover, we also used the Switchboard tokenizer with 

data augmentation to run the experiments using the QUESST 
2014 dataset, and we observed no performance hurt at the 
QUESST 2014 dataset as shown in Table 2. We believe that 
the resultant tokenizer has better coverage of various acoustic 
conditions. 

4.2. Improvement by stacked bottleneck features and 
effect of data mismatch  
Stacked bottleneck features (SBNF) [19], which are extracted 
from the second-level network and make use of longer 
temporal context, can outperform the bottleneck features 
(BNF) from the first-level neural network in ASR. However, it 
is usually not the situation in QbE-STD on multiple languages.  

In our submitted system, we used both BNF and SBNF. It 
was motivated by the observation (as shown in Table 3) that 
SBNF could not bring consistent gain over BNF across queries 
in different languages when no data augmentation was used. 
Previously, we attributed it to the language mismatch between 
the SBNF tokenizer and the audio archive. However, we found 
that when the data augmentation method was used, SBNF 
consistently outperformed BNF, and the fusion with the 
system using the bottleneck features from the first-level neural 
network was not necessary. To our knowledge, consistently 
superior performance by SBNF has never been reported in 
QbE-STD on multiple languages. 

We also used the Switchboard BNF and SBNF extractors 
(without data augmentation) to run the QbE-STD experiments 
on the QUESST 2014 dataset (similarly from different 
sources, but with less acoustic variation), we also observed 
that SBNF only brought performance gain on English (non-
native) queries as shown in Table 4. Although there is no 
overall performance drop in all non-English (including 
Albanian, Basque Czech, Romanian and Slovak) queries, 
obvious performance drop is found in Albanian and Basque 
queries. 

In a word-discrimination task on the Switchboard corpus 
reported in [29], cross-lingual BNF and SBNF extractors were 
trained using similar telephony conversational speech, but 
from different languages (Spanish and Mandarin Chinese). In 
the experiments, cross-lingual SBNF extractors trained using 
the Fisher Spanish and HKUST Mandarin Chinese corpora 
could outperform their corresponding BNF extractors. 

Based on the observations from the above three different 
sets of experiments, we believe that reducing data mismatch 
(especially mismatch in language and acoustic variation) is an 
important factor for obtaining consistent gain from cross-
lingual SBNF on multi-lingual QbE-STD. In the acoustic 
challenging audio like the QUESST 2015 dataset, reducing the 
acoustic condition mismatch becomes more important.
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Table 3. SBNF outperform BNF when data augmentation is used. Tokenizers are trained using Switchboard English corpus. Results 
are evaluated on T1 dev queries of QUESST 2015. 

 
Table 4. Performance of BNF and SBNF on QUESST 2014 

dataset. Results are evaluated on T1 dev queries. 

Tokenizers 
minCnxe / maxTWV 

English non-English 
Switchboard BNF 0.865 / 0.092 0.746 / 0.335 

Switchboard SBNF 0.816 / 0.146 0.742 / 0.336 

4.3. Partial matching 
When the revised data augmentation method was used, both 
partial matching DTW systems and symbolic search systems 
could obtain considerable performance gain. An English 
phoneme tokenizer, which was trained using the Switchboard 
corpus, was used in a partial matching DTW (for obtaining 
phoneme boundary) and a symbolic search system. The 
phoneme tokenizer was a 6-hidden-layer DNN with 2048 
neuron units in each layer, and it used a phoneme-loop 
grammar to perform tokenization. The partial matching DTW 
system using the phoneme boundary information showed 
slightly better performance than that using fixed window. For 
more detailed analysis of the partial matching systems, please 
see [17]. 

 
Table 5. Performance of three post-evaluation component 

systems on QUESST 2015 dev set. All use tokenizers trained 
using Switchboard. 

Systems 
minCnxe / maxTWV 

T1 T2 T3 All 
Exact 

matching 
DTW 

0.621 / 
 0.412 

0.886 / 
 0.090 

0.880 / 
0.132 

0.827 / 
0.214 

Partial 
matching 

DTW 

0.701 / 
0.329  

0.781 / 
0.193 

0.838 / 
0.149 

0.788 / 
 0.225 

Symbolic 
search 

0.903 / 
0.108 

0.925 / 
0.029 

0.949 / 
0.031 

0.931 / 
0.055 

 
The performance of the phoneme-boundary partial 

matching DTW system, the symbolic search system and the 
exact matching system mentioned in section 4.1 are shown in 
Table 5. From the table, we can observe the partial matching 
DTW system performs better than for T2 and T3 queries, 
while the exact matching system performs better for T1 
queries. Although the symbolic search system is not as good as 
the other two systems, we will show that these systems 
complement each other in system fusion in the next section. 

 

 

4.4. System fusion 
As in our submitted system, scores from DTW systems were 
normalized to zero mean and unit variance, and scores from 
symbolic search systems were converted to log-likelihood 
ratio. Scores from all component systems were then fused with 
the FoCal toolkit [30]. 
Table 6. Performance of fused systems on QUESST 2015 dev 

set. 

Systems 
minCnxe / maxTWV 

T1 T2 T3 all 
Exact matching 

DTW (English) + 
Exact matching 
DTW (Spanish) 

0.566 / 
 0.466 

0.863 / 
 0.128 

0.852 / 
0.170 

0.795 / 
0.256 

 Partial matching 
DTW + Symbolic 

search 

0.699 / 
0.344  

0.777 / 
0.192 

0.832 / 
0.155 

0.783 / 
 0.231 

Fusion of four 
systems 

0.558 / 
0.480 

0.753 / 
0.259 

0.784 / 
0.219 

0.723 / 
0.320 

 
Table 6 shows the results of the fused systems in post-

evaluation. One more exact matching DTW system using the 
Fisher Spanish SBNF with data augmentation is involved in 
the system fusion. It uses the same phoneme-label-based SAD 
as the other exact matching DTW system. Performance gains 
are obtained when fusing exact matching and two types of 
approximate matching systems, and fusing systems using 
different tokenizers. Note that fusion of the four systems 
(minCnxe of 0.723 and MTWV of 0.320) outperforms our 
submitted system (minCnxe of 0.757 and MTWV of 0.286) 
which performed the best among all the QUESST 2015 teams. 

5. Conclusions
The significant techniques for building a state-of-the-art 
language-independent QbE-STD system for the QUESST 
2015 have been summarized. Our post-evaluation system 
involving a smaller number of component systems 
outperforms our submitted system, which performed the best 
for the task. To deal with the challenging acoustic conditions 
of the data, training of tokenizers with data augmentation has 
been shown important in different types of component 
systems. Score fusion of different component systems is still 
important for obtaining considerable performance gain. 

 

With data 
augmentation? Features 

minCnxe / maxTWV 
Albanian Mandarin Czech Portugese Romanian Slovak All 

No 
BNF 0.468 / 0.433 0.951 / 0.057 0.838 / 0.116 0.561 / 0.394 0.433 / 0.559 0.645 / 0.229 0.744 / 0.240

SBNF 0.572 / 0.381 0.945 / 0.075 0.827 / 0.148 0.579 / 0.367 0.457 / 0.542 0.659 / 0.258 0.758 / 0.234

Yes 
BNF 0.417 / 0.468 0.911 / 0.090 0.771 / 0.210 0.454 / 0.473 0.423 / 0.564 0.535 / 0.432 0.680 / 0.330

SBNF 0.399 / 0.572 0.891 / 0.138 0.711 / 0.251 0.349 / 0.626 0.362 / 0.667 0.505 / 0.477 0.621 / 0.412
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