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Abstract

This paper proposes a novel memory neural network structure,
namely gating recurrent enhanced memory network (GREMN),
to model long-range dependency in temporal series on language
identification (LID) task at the acoustic frame level. The pro-
posed GREMN is a stacking gating recurrent neural network
(RNN) equipped with a learnable enhanced memory block n-
ear the classifier. It aims at capturing the long-span history and
certain future contextual information of the sequential input. In
addition, two optimization strategies of coherent SortaGrad-like
training mechanism and a hard sample score acquisition ap-
proach are proposed. The proposed optimization policies dras-
tically boost this memory network based LID system, especial-
ly on the large disparity training materials. It is confirmed by
the experimental results that the proposed GREMN possesses
strong ability of sequential modeling and generalization, where
about 5% relative equal error rate (EER) reduction is obtained
comparing with the approximate-sized gating RNNs and 38.5%
performance improvements is observed compared to conven-
tional i-Vector based LID system.

Index Terms: language identification, gating recurrent neural
networks, learnable enhanced memory block, SortaGrad-like
training approach, hard sample score acquisition

1. Introduction

Nowadays, the state-of-the-art language identification (LID)
system has benefited a lot from the successful application of
the deep neural networks (DNN). As shown in existing research
achievements [1, 2, 3, 4, 5, 6], deep bottleneck feed forward
neural network (DBN) which is used as a front-end feature ex-
tractor within the i-Vector framework remarkably boosts the
LID system. Addtionally, a rectified i-Vector scheme based on
a unified DBN is proposed to apply DNN to LID task at larg-
er scale [2]. Different from the works mentioned above, this
universal architecture covers both the front-end discriminative
feature extraction and back-end acoustic modeling stages. It
improves the transferability of the pre-trained DBN and largely
boosts the generalization capability of the DBN based i-Vector
representation LID system.

Even though the DBN based i-Vector framework achieves
huge performance improvement, two limitations are obvious.
First, its complex architecture detriments the expansibility of
the LID system. Second, the DBNs applied to LID task are
either shallow architectures or developed independently from
the classification task. Motivated by the inherent discriminative
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nature of DNNs, the works apply the feedforward deep neural
network (FDNN) directly to the LID task at the acoustic frame
level [7, 8]. The powerful modeling capability of the FDNN
can complement the discrimination insufficiency of the i-Vector
framework based on sufficient training corpus.

However, a FDNN has its inherent limitation, that is, the
sequential nature of one utterance is ignored. Complement-
ing to feedforward DNN, RNN is able to capture long-span
dependency across the input temporal sequences. Long short
term memory (LSTM) [9, 10] and gated recurrent units (GRU)
[11, 12] RNNs are two commonly used recurrent architectures.
The elaborately designed gating mechanism of GRU and LST-
M conduces to their great success in many pattern recognition
fields, including neural machine translation [13], speech syn-
thesis [14, 13] and speech recognition [15, 16]. Inspired by
the powerful capability in temporal modeling in the acoustic
signal, the LSTM RNN is adopted on long-span discriminative
feature learning over the input acoustic sequence for automatic
language identification [7]. Since the simplified structure and
more intelligible working mode of GRU, more attention has
been drawn from the community [17, 14] and similar perfor-
mance to LSTM was reported. Both of the two gating units
have demonstrated significant superiority over the conventional
hyperbolic tangent/sigmoid activation function [18, 19, 20]. To
further augment memory learning, a new research direction fo-
cusing on constructing neural computing models becomes pop-
ular. These neural computing models are composed of various
forms of explicit longer-range memory units [21, 22, 23].

Inspired by the above memory learning network, this pa-
per proposes a novel gating recurrent neural memory network
which is equipped with external learnable memory resources
for automatic language identification at the acoustic frame lev-
el. The proposed memory network which combines the GRU
RNNs with an external memory enhancement block can cap-
ture the long-range history context information and certain fu-
ture contextual information. Our motivation is that the inheren-
t gating architecture of GRU in modeling temporal dependen-
cies across the acoustic signal can learn long-span discrimina-
tive features over the acoustic sequential input for LID. To the
best of our knowledge, this is the first time that a GRU coupled
with an external memory block scheme is applied at large scale
for automatic language identification.

This proposed memory network is composed of GRU
RNNs equipped with a learnable memory block near the clas-
sifier. The GRU RNNs model sequential dependency across
the traditional acoustic inputs. The learnable memory enhance-
ment block encodes certain future time-step adjacent activities
of the GRU hidden layer into a fixed-size feature representation,
which is fed into the classifier along with the GRU output. This
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composition operation can integrate both the previous contex-
tual information and certain future adjacent information within
a look-ahead window from the present location.

Different from the work [7], this paper extends the gating
RNNs model by integrating a memory enhancement block n-
ear the classifier. The learnable enhanced memory block which
is a tapped-delay line structure augments the output of GRU
RNNs by employing convolution-like operation within a look-
ahead window into the future. It encodes certain future ad-
jacent activities into a fixed-size feature representation. Two
kinds of different external enhanced memory blocks are inves-
tigated: row shared convolution-like GREMN (rGREMN for
short) and column shared convolution-like GREMN (cGREM-
N for short). These two convolution operation is similar to
the encoding methods in feedforward sequential memory net-
work (FSMN) [17, 21, 22]. The discriminative representation
can be regarded as an integration of long surrounding contex-
t around current location . Another obvious difference is the
model learning procedure, specifically, a SortaGrad-like train-
ing mechanism is explored in this paper. At evaluation stage,
two methods on utterance level score acquisition are investigat-
ed, which are averaging the log of the classifier output of all the
frames in an utterance (called soft average evaluation) and sam-
pling the last representative frames within an utterance (called
hard sample evaluation).

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief description of the classical GREMN frame-
work for LID. Experimental results and analysis are presented
in Section 3, and our whole work is summarized in Section 4.

2. Gating recurrent enhanced memory
networks
The proposed gating recurrent enhanced memory network
(GREMN) will be described in this section. This new archi-

tecture is composed of a gating RNN and an external memory
enhancement block near the classifier, see Figure 1(b).

(a) GRU

(b) GREMN

Figure 1: The architecture of GRU and GREMN.

2.1. Gating recurrent neural networks

A simple RNN (SRNN) with tangent or sigmoid activation
functions holds the potential to capture the long-range depen-
dencies in time sequence. But, its learning process faces the
challenge of the vanishing problem [24]. The LSTM and GRU
which are equipped with various learnable gates are enhanced
RNN architectures, these elaborately designed gating units en-
sure that the gradients can effectively flow back to the past.
The GRU which plays a role as the encoder-decoder in the
machine translation [11] contains two gating units: update and
reset gate. These two gates are used to modulate the flow of in-
formation inside the unit. Compared with LSTM, an candidate
activation m is introduced to GRU, which is the accumulat-
ed vector representation of the network inputs and the learned
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histories. The output of GRU is controlled by update gate, it
alternatively selects from the previous activation h:—; and the
candidate activation. Figure 1(a) presents the architecture of the
GRU and the computation formulates are as follows:

re = 0 (Wrext + Wenhe—1 + by) (D

me =g Wmaxt + Win (re © he—1)) 2
zt = 0 (Waaomy + Waphi—1 + b2) 3
he=(1—2) Qhi—1 + 20 ©my C))

where z, r, m and h respectively represents the activation
vectors of update gate, reset gate, candidate and the unit output.
o denotes the logistic sigmoid function, W terms denote weight
matrices and b terms are bias vectors.This simplified structure
of GRU ensures its faster training process and lower divergence
probability [7, 17].

2.2. Learnable enhanced memory blocks

Since the learnable enhanced memory block (EMB) can model
certain long-range dependency in sequential data with a simpli-
fied structure, it can be used as a complementary modular to the
GRU RNNs. The EMB adopts a tapped-delay line structure and
employs a convolution-like mechanism. This EMB encodes fu-
ture activations of the GRU RNNs output into a fixed-size repre-
sentation, which is fed into the classifier along with the current
activation of the GRU RNNs. Depending on the convolution
mechanism, two different variants are adopted: i) row shared
convolution-like EMB that elements in each row within a look-
ahead window into the future share the same scalar encoding
coefficient (rEMB for short); ii) column shared convolution-like
learnable EMB that elements in each column within the encod-
ing window share the same scalar encoding coefficience (cEMB
for short).

For a T length acoustic input sequence, we denote the cor-
responding outputs of the GRU-RNN for the whole sequence
as H = {h1,..,hr} . Suppose at time-step ¢, we use
7 steps of future contexts. We now define a feature matrix
hit4r = [Rig1, higo, ..., hiq ] of size D x 7, so the scalar
encoding coefficients of the row shared learnable EMB is D and
the column shared one is 7. At each time instant ¢, the EMB en-
codes the future adjacent 7 terms of h; into a fixed-sized feature
representation h;.

The computation process of rTEMB which is the same with
the scalar encoding method in works [17, 21] is actually a linear
blend, specifically:

-
h; = Eai'ht+i ©)
=1
where a {a1,a1,...,a-} denotes the row shared time-
invariant coeffcients.

As for the column shared EMB, we use a parameter vector

of size D to encode the future context information as follows:

ilt = Z aGhiy;
i=1

(©)

where © denotes element-wise multiplication, and the learnable
parameter vector is defined as @ = {a1, a1, ...,ap}. It is simi-
lar to the vectorized encoding method in works [17, 21] except
that the encoding coefficience is a vector

Since both the two convolution-like encoding methods in-
troduce very few parameters, they hold the intrinsic property of
significantly faster convergence and can be extended to a much
larger window size.



2.3. Gating recurrent enhanced memory networks

Figure 1(b) illustrates the GREMN architecture adopted in this
paper. The EMB which is equipped between the GRU RNNs
and classifier works as a complementary modular to the en-
coder, it encodes the activities of the GRU RNNs into a fixed-
size feature representation and feeds it into the classifier along
with the output of GRN RNNs. Therefore, a memory network
based model is obtained to implement frame level classification
to automatic language identification task.

With the composition mechanism of GRU and EMB, the
frame level feature representation into the classifier can inte-
grate both the previous information in the past as well certain
future information within the look-ahead window block from
the current location.

3. Experiments
3.1. Experimental setups

The NIST Language Recognition Evaluation (LRE) 2007
dataset is used for demonstrating the effectiveness of the pro-
posed GREMN in this paper. The training dataset is composed
of LREO5_OHSU, CALLFRIEND and LIDO5el and the exper-
iment test corpus is a subset of the official NIST LRE 2007 3s
condition evaluation set. 14 kinds of languages and 2158 seg-
ments are included in the 3s evaluation data. Both the training
dataset and evaluation dataset come from Conversational Tele-
phone Speech (CTS) audio source. There are three differences
about the experiment corpus between the works [7, 8] and this
paper. Firstly, only a subset of ’Voice of America” news (VOA)
audio source contained in LRE 2009 is adopted in the work-
s [7, 8], while we evaluate our model on the CTS LRE 2007
dataset. Secondly, a subset of only 8 representative languages of
which abundant training material (up to 200 hours) are selected
for their experiment [7, 8], while we evaluate our memory net-
work on all of the 14 languages to demonstrate the generaliza-
tion capability of the proposed model despite of large disparity
on training corpus for every language. Finally, the training ut-
terances are split into random chunks of length between 2.5 and
3 seconds for better randomization and learning stability [7, 8],
while we only split the much longer audio into about 30 seconds
and keep the shorter ones in about 3 seconds to implement the
proposed SortaGrad-like training mechanism in this paper.

The input of the memory network is the 42-dimensional a-
coustic feature vectors that composed of 13-dimensional per-
ceptual linear prediction coefficients (PLP) and pitch coefficient
along with their first and second delta. All experiments are car-
ried on the open toolkit KALDI [25]. For experimental compar-
ison, three types of architectures, which are LSTM RNNs, GRU
RNNs and GREMN respectively, are established. Two kinds of
LSTM RNNs models with different depth are explored. Each
hidden layer of the LSTM RNNs contains 800 memory cells
with 512 recurrent projection units while the GRU RNNs mod-
els with 800 memory units per layer. The GREMN are com-
posed of 3 hidden layer GRU and a EMB near the classifier. All
models are optimized with the famous truncated backpropaga-
tion through time (BPTT) learning algorithm [7, 8]. Addition-
ally, the proposed SortaGraid-like training method is adopted to
make full use of our training materials [17].

For test scoring, two types of utterance level score acquisi-
tion approaches are investigated, which are soft average evalu-
ation and hard sample evaluation.
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Table 1: Performance (EER %) of the sortaGrad-like training
method on LRE 2007 (3s segments).

| model | Hard Evaluation |
GRU_h3_HB 15.75
GRU_h3_SL 13.16
LSTM_h3_HB 15.02
LSTM_h3_SL 12.24

3.2. Experimental results and analysis

We evaluate all memory network based frame level LID system-
s in this section. The proposed SortaGrad-like training mecha-
nism will be discussed and two types of computing an utterance
level score methods will be investigated.

3.2.1. SortaGrad-like training mechanism

Some algorithmic challenges exist when training RNNs on me-
terials of varying length. The work in [7, 8] tackled this issue
by spliting the training examples into random chunks of dura-
tion 3 seconds using the BPTT training algorithm [26]. How-
ever, this harms the ability to learn longer-range correlations.
Some works have found it a gradual process for learning long
sequence modeling about recurrent neural networks and that p-
resenting training materials in order of difficulty contributes a
lot to online learning [27, 28]. Sequence learning in LID task
faces the same challenge of tackling longer term dependencies
as the automatic speech recognition [17].

In the GRU-RNN modeling learning procedure, the abil-
ity of learning longer span correlations partly relates to the
length of the training examples. The hidden states in GRU-RNN
depend on the previous ones implicitly, but, this dependency
shrinks with the input sequence length increases. Inspired by
the curriculum learning strategy algorithm: SortaGrad [17], we
treat the length of the examples as a heuristic motivation for
memory learning augmentation, since longer examples can fur-
ther arouse potential of learning longer term dependencies for
the GRU-RNN than short ones. Rather than splitting all the
training corpus into chunks of duration 3 seconds, this work s-
plits the much longer audio into about 30 seconds and keep the
shorter ones in about 3 seconds. The implementation of the pro-
posed SortaGrad-like method is as follows: At the early training
stage, only the shorter examples in the training set are utilized
for pre-training, which is an effective way to quickly bring the
model parameters in a better range. Then the longer examples
are used to further augment the ability to learn longer term de-
pendencies of the GRU-RNNSs. During training process, rather
than setting the same alignment sparsely: 1 in every 5 frames
for a chunk in the work [7, 8], we set the same target language
id for each training example, so the errors are calculated from
every frame in a trunk.

Table 1 shows a comparison of training precedure with
and without SortaGrad-like. GRU_h3_SL and LSTM_h3_SL are
the 3 hidden layers GRU and LSTM models learned by the
SortaGrad-like training method while the GRU_h3_HB and L-
STM_h3_HB are the models trained without it for contrast.

Experiment result shows that the SortaGrad-like training
method is more effective to exploit the potential of the RNNs to
model long-range sequence. Huge performance improvement
is observed that about 16.4% and 18.5% relative reduction in
EER are obtained on the 3 hidden layers GRU and LSTM mod-
el. We suspect that this benefit occurs primarily because the
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Figure 2: Frame level score on target language.

learning longer term dependencies is a process of gradual en-
hancement for the RNNs. The proposed SortaGrad-like training
method best fits to this enhancement process: the shorter utter-
ances used in the earlier training stage can ensure the model
stability and the longer utterances further augment the sequen-
tial modeling capability and accelerate online learning.

3.2.2. Two types of utterance level score acquisition

At the evaluation stage, two methods on computing an utter-
ance level score will be investigated for sequential input data.
The first one is identical to the method adopted in works [7, 8]
that averaging the log of the classifier output for the target lan-
guage of all the frames in an utterance (soft average evaluation),
the second one is carrying out a sampling on the last represen-
tative frames within an utterance (hard sample evaluation). The
motivation of hard sample evaluation approach is that the inher-
ent capability of sequential modeling of the memory networks
and the ubiquitous phenomenon of increasing frame level score
with time advancing showed in Figure 2. Theoretically, the out-
put representative fixed-size features of the last few frames from
the memory networks are more discriminative. So, this paper
samples the representative features of the last few frames in an
utterance and then take the average the sampled frames for e-
valuation. What’s more, the heuristic observation on the test
score distribution trend chart demonstrates the effectiveness of
this hard sample evaluation method. Figure 2 illustrates the s-
core distribution of one example on its target language. As it
shows, the score on the target output of each frame increases
with the temporal lasting in one utterance no matter whether
this utterance gets the correct classification result. Depending
on the proposed hard sample evaluation approach, about 18.8%
and 19.5% relative EER reduction are observed on the 3 hidden
layer GRU and LSTM models.

As shown in Table2, GRU_h2_SL, GRU_h3_SL, LST-
M_h2_SL, LSTM_h3_SL are the 2 and 3 hidden layers GRU and
LSTM models learned by the SortaGrad-like operation. The
hard sample evaluation method performs much better than the
traditional average operation based on the RNN models. This
result confirms the ability of the RNN architecture to model
longer-range context information. With temporal lasting in one
test audio, the future adjacent frames which integrate the com-
plex long-range correlations are more discriminative and get
higher scores on its target language. Therefore, the proposed
hard sample evaluation method is more effective and this eval-
uation operation is kept for the remainder of the experiments.

3.2.3. Evaluation of the GREMB in modeling sequential data

This section gives a detailed analysis on the augmentation of
enhanced memory block to the GRU RNNs model. Two kinds
of EMB: column shared enhanced memory block (cEMB) and
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Table 2: Performance (EER %) comparison between the hard
sample evaluation and soft average evaluation approach.

[ model [ Soft Evaluation [ Hard Evaluation |
GRU_h2_SL 16.53 14.13
GRU_h3_SL 16.21 13.16
LSTM_h2_SLJ 16.03 12.92
LSTM_h3_SL| 15.20 12.24

row shared enhanced memory block (rEMB) are equipped to the
3 hidden layers GRU model to get the cGREMN and rGREM-
N models. In the experiment, two different sized windows are
explored, conv_11 and conv_21 separately denote the future ad-
jacentitems looking ahead into the future.

Table 3: Performance (EER %) of the GREMNs.

| model | Hard Sample Evaluation |
GRU_h3_SL 13.16
c¢GREMN_conv11 12.88
cGREMN _conv21 13.02
rGREMN _convl1 12.88
rGREMN _conv21 12.55
i-Vector baseline 20.39 |

As it shows in Tabel 3, both of the two kinds GREMN per-
form better than the 3 hidden layer GRU architecture. Obvi-
ously, the proposed rGREMN architecture with 21 time-step
look-ahead window achieves the best performance that nearly
5% relative reduction compared with 3 hidden layer GRU and
38.5% relative reduction compared with traditional i-Vector ap-
proach in EER are obtained on the 3s test condition. Experi-
mental result confirms the complement of the enhanced memo-
ry block to the GRU RNNs and further demonstrates that weight
sharing in the convolution operation contribute to more effective
modeling. To our knowledge, this is the best result of applying
memory neural networks to LID tasks at large scale on the huge
disparity of training materials. Distinguished from elaborately
selecting a subset of only 8 representative languages with up to
200 hours training materials [7, 8], this paper evaluates the pro-
posed GREMN on the all of the languages to demonstrate the
generalization capability of the proposed model despite of large
disparity on training corpus.

4. Conclusions

In his paper, a novel gating recurrent enhanced memory network
(GREMN) is applied to the automatic language identification
task to implement a frame level classification. The proposed
GREMN is a stacking GRU RNNs equipped with a learnable
enhanced memory block near the classifier. It is able to model
the long-term history and certain future contextual information
which best fits the frame level classification. Additionally, the t-
wo optimization strategies: the coherent SortaGrad-like training
mechanism and a hard sample score acquisition approach, dras-
tically boost the memory network based LID system, especially
on the large disparity training materials. Excellent experimen-
tal results are observed that 5% relative EER reduction is ob-
tained comparing with the GRU RNNs and 38.5% performance
improvements is observed comparing with the conventional i-
Vector based LID system.
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