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Abstract
Example-based speech enhancement is a promising approach
for coping with highly non-stationary noise. Given a noisy
speech input, it first searches in noisy speech corpora for the
noisy speech examples that best match the input. Then, it con-
catenates the clean speech examples that are paired with the
matched noisy examples to obtain an estimate of the under-
lying clean speech component in the input. This framework
works well if the noisy speech corpora contain the noise in-
cluded in the input. However, it is impossible to prepare cor-
pora that cover all types of noisy environments. Moreover,
the example search is usually performed using noise sensitive
mel-frequency cepstral coefficient features (MFCCs). Conse-
quently, a mismatch between an input and the corpora is in-
evitable. This paper proposes using bottleneck features (BNFs)
extracted from a deep neural network (DNN) acoustic model
for the example search. Since BNFs have good noise robustness
(invariance), the mismatch is mitigated and thus a more accurate
example search can be performed. Experimental results on the
Aurora4 corpus show that the example-based approach using
BNFs greatly improves the enhanced speech quality compared
with that using MFCCs. It also consistently outperforms a con-
ventional DNN-based approach, i.e. a denoising autoencoder.
Index Terms: example-based speech enhancement, example
search, bottleneck feature

1. Introduction
Speech enhancement is an essential technology for significantly
improving the quality of speech-based applications in adverse
environments. A lot of effort has been expended over the
years on developing various types of effective speech enhance-
ment approaches [1]. In particular, single-channel approaches
have been extensively studied (e.g. [1–20]), since they impose
very few hardware constraints compared with multi-channel ap-
proaches.

Conventional filtering-based single-channel approaches
(e.g. [1–7]) estimate noise statistics and then use them to filter
out the noise component from a noisy speech input. The advan-
tage of these approaches is their low computational complexity.
However, tracking the statistics of a highly non-stationary noise
remains a difficult task.

Deep neural network (DNN) technology has led to a new
trend in single-channel approaches, i.e. denoising autoencoders
(DAEs) (e.g. [8–12]). A DAE is a DNN trained by using a
noisy-clean parallel speech corpus to map noisy input features
(e.g. log-power spectra) to clean feature estimates. Thanks to
nonlinear feature transformations through stacked hidden layers
in a DNN, a DAE has a superior mapping ability and shows a
high denoising performance in various noisy environments.

In this paper, we focus on an example-/corpus-based (or
inventory-style) approach (e.g. [13–20]). As with a DAE, an
example-based approach directly estimates the underlying clean
speech component in a given noisy input using a noisy-clean
parallel speech corpus. However, it focuses strongly on exploit-
ing raw and precise data, i.e. examples, included in the speech

corpora. The example-based approach originally proposed in
[13, 14] can be outlined as follows (see Section 2 for details).
It prepares a clean speech corpus and the corresponding artifi-
cially contaminated noisy speech corpora. In the testing stage,
given a noisy speech input, it first searches in the noisy speech
corpora for noisy speech examples (segments) that best match
the input. Then, it concatenates the corresponding clean speech
examples included in the clean speech corpus to obtain an es-
timate of the underlying clean speech component in the input.
Finally, it uses this clean speech estimate to denoise the input.
The example search is performed based on a longest matching
criterion. This criterion is important since longer speech ex-
amples can be identified more accurately in noisy environments
than shorter examples because of their more distinct and richer
spectral-temporal pattern information. As a result, the example-
based approach exhibits higher enhancement performance than
the conventional approaches especially in highly non-stationary
noisy environments [13–17].

However, in previous studies of the example-based ap-
proach, the example search was not always performed accu-
rately enough. Although it is desirable that the noisy speech cor-
pora encompass all the noisy environments that we encounter at
test time, in reality, this is infeasible. Moreover, since the ex-
ample search is performed by evaluating similarity between an
input and a noisy example both of which are represented by
acoustic features, typically, mel-frequency cepstral coefficients
(MFCCs), which are sensitive to noise, the search process can
be greatly affected by noise. Therefore, a mismatch between an
input and the noisy speech corpora is inevitable. This mismatch
makes the example search less accurate and therefore degrades
the quality of the enhanced speech. In addition, it is clear that
the cost of the example search is very high, especially when
large speech corpora are used [15, 16, 20].

In this paper, we propose the use of bottleneck features
(BNFs) [21–23] extracted from a DNN acoustic model as a rep-
resentation of a noisy speech input and a noisy speech example
and perform a robust example search based on them (Section 3).
Since BNFs have good noise robustness (invariance) [21, 24],
the mismatch problem between an input and the noisy speech
corpora can be mitigated, and thus a more accurate example
search can be conducted. Experimental results on the Aurora4
corpus [25, 26] show that the example-based approach using
BNFs greatly improves the enhanced speech quality compared
with that using MFCCs (Section 4). It also consistently outper-
forms a DAE, i.e. a DNN-based strong competitor. In addition,
because of the BNFs’ discriminative property [21, 24], many
unlikely example hypotheses can be pruned efficiently during
the example search, and thus the example search can be greatly
accelerated compared with when using MFCCs.

2. Example-based speech enhancement
This section briefly describes the basic framework of the
example-based approach, which was originally proposed in
[13, 14], using Fig. 1 (see [16] for further details), and elabo-
rates the problems in the example search.
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Figure 1: Basic framework of example-based speech enhanc-
ment.

2.1. Basic framework
In the training stage (dotted box in Fig. 1), a clean speech cor-
pus is first prepared. It is then artificially contaminated with
various types of noise to form a parallel speech corpus. Feature
extraction is performed for all of these speech corpora. Here,
the features are typically conventional MFCCs. As regards the
clean corpus, the magnitude spectra are also extracted. Using
the extracted MFCCs, Gaussian mixture models (GMMs) are
trained that represent each of the corpora. To represent the
precise spectral patterns of speech, the dimensionality of the
MFCCs and the number of mixture components in the GMMs
are set at large values (e.g. 80 and 4096).

In the example search stage, given a noisy speech input, we
first extract its MFCC, magnitude spectrum and phase spectrum
sequences. Using the GMMs and the noisy speech corpora, and
based on an example evaluation function [16], we search for a
sequence of longest matching noisy examples (segments) in the
input noisy speech.

In the enhancement stage, using the found matching noisy
example sequence and the clean speech corpus, we resynthe-
size a clean magnitude spectrum sequence by concatenating the
corresponding clean speech magnitude spectra. Finally, we per-
form Wiener filtering to obtain the final enhanced speech using
the resynthesized clean magnitude spectrum sequence and the
magnitude/phase spectrum sequences extracted from the input
noisy speech.

2.2. Problems in example search
As we have already mentioned in Section 1, it is impossible to
prepare noisy speech corpora that cover all types of noisy envi-
ronments. Moreover, the example search is usually performed
using conventional noise sensitive MFCCs. Therefore, a mis-
match between a noisy speech input and the noisy speech cor-
pora is inevitable as shown in Fig. 1. This mismatch can degrade
the accuracy of the example search and, as a result, the quality
of the enhanced speech.

In addition, the cost of the example search is very high [15,
16, 20]. We greatly accelerated the example search in [16] by
introducing a tree and linear connected search space. In this
search space, we can perform a shared likelihood calculation
for many example hypotheses with efficient pruning of unlikely
hypotheses. However, the example search must be accelerated
further, especially, when we use large speech corpora.
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3. Robust example search using BNFs
The noise robustness of acoustic models used in automatic
speech recognition (ASR) can be greatly increased by incor-
porating DNN technology, e.g. [21–25]. The noise robustness
of a DNN acoustic model comes from multiple nonlinear fea-
ture transformations through its stacked hidden layers. In noisy
environments, acoustic features (e.g. MFCCs or log-mel fil-
terbank features (FBANKs)) are usually influenced by noise.
However, if they are input into a DNN and layer-by-layer trans-
formations are applied, the influence of the noise is significantly
decreased. Consequently, the features extracted from the higher
(deeper) hidden layers are less influenced by noise [21, 24]. It
is reasonable to exploit this noise robustness (noise invariance)
of DNN-based features in the example search to tackle the mis-
match problem described in Section 2.2.

However, the direct use of DNN-based features for GMM
training is difficult because of their high dimensionality (typi-
cally, 2048, i.e. the number of nodes in a hidden layer). There-
fore, we use features extracted from a bottleneck hidden layer
(e.g. [21–23]), which has a smaller number of nodes (e.g. 80)
than the other layers. When using BNFs instead of MFCCs,
we do not need to change the basic framework of the example-
based approach described in Section 2.1.

Figure 2 shows why a more accurate example search can
be performed with BNFs than with MFCCs. In this figure, we
assume that an utterance is given as the input and the same utter-
ance is included in the corpus, and that these two utterances are
contaminated with different noises. Ideally, the input utterance
should match the corpus utterance. However, if we use MFCCs,
the input utterance would not match the corpus utterance, since
MFCCs are influenced by noise, and the extracted MFCCs for
the two utterances would be very different. In contrast, if we use
BNFs transformed from the MFCCs (or FBANKs) by a DNN,
the input utterance would match the corpus utterance, since the
influences of the noises are mitigated by the layer-by-layer non-
linear feature transformations, and the extracted BNFs for the
two utterances would be similar.

There are other advantages of using BNFs instead of
MFCCs in the example search. Features input to a DNN (e.g.
MFCCs or FBANKs) are spliced for several (typically, 11)
frames, as a result, the typical dimensionality of the input fea-
tures is around from 729 to 1320. Thus, we can consider a
longer context of a given speech signal in the example search.
A DNN used in ASR is trained to discriminatively predict tri-
phone states. This indicates that BNFs are also discriminative
features [21, 24]. Thus, we can perform the example search
while predicting the content of a given utterance (in Fig. 2,
“speech”) at triphone state level granularity. In addition, be-
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Figure 3: Short-time objective intelligibility measure (STOI ∈[0, 1], a correlation coefficient, larger is better) values of unprocessed
input speech (referred to as Unproc in this figure), and those of the enhanced speech obtained by the optimally modified log-spectral
amplitude estimator (LSA), the denoising autoencoder (DAE), and the example-based approaches with MFCCs (MFCC) and bottleneck
features (BNF), for the clean and each of the six noise conditions (and their averages with and without the clean condition) in the
Aurora4 corpus. The obtained values are averaged over the different microphones for each of the seven conditions.

cause of the BNFs’ discriminative property, during the example
search, the likelihood of a top example hypothesis tends to be-
come much higher than those of the other example hypotheses.
Thus, by using BNFs, we can efficiently prune unlikely example
hypotheses and greatly accelerate the example search.

On the other hand, there is a concern as regards using BNFs.
BNFs are also robust to speaker variability [21, 24]. Because
of this speaker normalization ability, it may be difficult to use
speaker information included in given utterances in the example
search. As a result, the enhanced speech may lose the original
speaker characteristics. We will investigate this concern exper-
imentally in the next section.

4. Experiments
We conducted experiments to evaluate the proposed example-
based approach using BNFs in comparison with that using
MFCCs, a conventional filtering-based approach, and a DAE.

4.1. Experimental settings

The Aurora4 multi-condition corpus [25, 26] was used in the
experiments. The corpus is derived from the Wall Street Jour-
nal (WSJ0) 5k-word closed vocabulary ASR task. The training
set consists of 7138 utterances spoken by 83 speakers (about 14
hours in total). Half of them were recorded with a close talk-
ing microphone while the other half were recorded with a desk
mounted secondary microphone. Each part was further divided
into seven subsets. One subset was left unprocessed while six
different types of noise (car, babble, restaurant, street traffic, air-
port, train station) were added to each of the remaining subsets
with 10-20 dB signal-to-noise ratios (SNRs). A clean training
set corresponding to the above multi-condition training set was
also used as a corpus providing clean magnitude spectrum ex-
amples (Fig. 1).

Aurora4 has 14 evaluation sets, each with different envi-
ronmental conditions, to allow systems to be evaluated under
different noise conditions. Each evaluation set contains 330 ut-
terances from eight speakers different from those of the training
set. As with the training set, seven of the 14 evaluation sets
were recorded with a close talking microphone while the re-
maining sets were recorded with a secondary microphone. The
same six different types of noise as used with the training sets
were added to the six close talking and six secondary micro-

phone evaluation sets with various SNRs ranging from 5 to 15
dB. There are 4620 evaluation utterances in total.

The sampling frequency, frame length, and frame shift were
16 kHz, 20 ms, and 10 ms, respectively. For the conventional
example-based approach with MFCCs (hereafter, referred to as
ExB w/ MFCC), we extracted 80-dimensional (including a one-
dimensional log energy term) MFCCs for the multi-condition
training set described above and trained a GMM with 4096
Gaussian mixture components used for the example search.

For the proposed example-based approach with BNFs
(hereafter, referred to as ExB w/ BNF), we first trained a basic
fully connected feedforward DNN used for ASR according to a
standard recipe [27] using the multi-condition training set. 729-
dimensional features input to the DNN were obtained by splic-
ing 24-dimensional mean-and-variance-normalized FBANKs
plus their delta and delta-delta features within an 11-frame con-
text window. The output layer of the DNN corresponds to 3040
triphone states defined by a baseline GMM-hidden Markov
model (HMM) system. The DNN has seven hidden layers.
The sixth layer is a bottleneck layer that has 80 nodes and the
other layers have 2048 nodes. Using this DNN, we extracted
80-dimensional BNFs for the multi-condition training set and
trained a GMM with 4096 components that was used for the
example search.

We also evaluated two other competitor approaches. One is
the optimally modified log-spectral amplitude estimator (OM-
LSA) [4, 5], which is a conventional filtering-based approach
that is available as a MATLAB tool [28]. OM-LSA is a good
competitor for our approach in Aurora4, since the noise of Au-
rora4 is moderately non-stationary and thus can be suppressed
by filtering-based approaches. The other is a DAE, which is a
DNN-based strong competitor. The DAE is based on a basic
fully connected feedforward DNN. It has four 2048-node hid-
den layers and is trained using the Aurora4 corpus with a mini-
mum mean square error criterion. The input/output features are
log-power spectra. Details of this DAE are described in [12].

The objective evaluation measure is the short-time objec-
tive intelligibility measure (STOI) [29, 30]. A larger STOI
(∈[0, 1], a correlation coefficient) indicates higher quality en-
hanced speech. STOI has a high correlation with speech intelli-
gibility. The two example-based systems were implemented in
C with our fast example search algorithm [16]. They were run
on a Linux system with Intel Xeon CPU E5-2650 v2 2.60GHz
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and their example search speeds were measured with the real
time factor (RTF). A smaller RTF indicates a faster search.

4.2. Experimental results

Figure 3 shows the obtained STOI values. Looking at the “av-
erage” results, we can confirm that it is difficult to improve the
STOI value by applying a speech enhancement technique since
the values obtained by OM-LSA, DAE and ExB w/ MFCC
are slightly better or worse than those of the unprocessed in-
put speech. In contrast, ExB w/ BNF greatly improves the
STOI values. Looking at each of the six noise conditions, with
the exception of the “restaurant” noise, DAE shows the second
best results. In contrast, ExB w/ BNF consistently shows the
best results. Under stationary noisy conditions such as “car”
and “babble”, ExB w/ BNF performs only slightly better than
DAE. However, under non-stationary noisy conditions such as
“restaurant”, “street” and “train”, ExB w/ BNF performs much
better than DAE. It should be noted that, although the STOI
value for “clean” speech input obtained by ExB w/ BNF is not
very good, its audible quality is perfectly fine.

Figure 4 shows spectrogram samples. We can confirm that
appropriate denoising is realized by ExB w/ BNF. Comparing
the spectrograms obtained with ExB w/ MFCC and ExB w/
BNF, we can confirm that ExB w/ MFCC fails to denoise in the
silence region while ExB w/ BNF denoises successfully (sur-
rounded by dotted boxes). We can also find similar results in
the other spectrogram samples. These results are attributable to
the ability of the DNN from which the BNFs are extracted. The
DNN is trained to discriminatively predict the triphone states in-
cluding the silence states (Section 3), and thus it can accurately
discriminate silence regions from speech regions.

The audible quality of the enhanced speech obtained by
ExB w/ BNF is steadily improved compared with that obtained
by ExB w/ MFCC. We had a concern that the speaker character-
istics may be lost in the enhanced speech obtained by ExB w/
BNF because of BNFs’ speaker normalization ability [21, 24]
(Section 3). However, it maintains the original speaker charac-
teristics well. This can be attributed to the fact that, in the last
stage of the enhancement, we perform Wiener filtering using an
original noisy speech input [13, 14] (Section 2.1). To ensure
that we exploit the speaker information in the example search,
we can use i-vectors (e.g. [31–33]) along with BNFs.

Finally, Table 1 shows the RTF measurement results of the
example search. We can confirm that ExB w/ MFCC is fast
enough by employing our fast example search algorithm pro-
posed in [16]. However, ExB w/ BNF is even faster. It is about
8.5 times faster than ExB w/ MFCC. Note that these RTF values
do not include the time for feature extraction. Actually, the cost
of the BNF extraction is higher than that of the MFCC extrac-
tion. However, the cost of the feature extraction is negligible
compared with the potential cost of an example search (i.e. the
cost of a frame-by-frame example search [16] in large speech
corpora). In addition, the BNF extraction can be accelerated by
using general purpose graphical processing units [21].

5. Relation to previous work
The mismatch problem between a noisy speech input and
the noisy speech corpora is tackled in [15, 17] by exploiting
filtering-based approaches that estimate noise statistics (Sec-
tion 1). [15] proposes the interconnection of a filtering-based
approach and the example-based approach. With this method,
the filtering-based approach acts as a preprocessor that reduces
the noise component in noisy inputs. As a result, the vari-
ety of noisy environments that the noisy speech corpora should
cover is reduced. Our approach differs from this method since
it does not change the basic framework of the example-based
approach but simply changes the features used in the example
search. Consequently, we can combine our approach with [15]
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Figure 4: Spectrogram samples of (a) clean speech, (b) noisy
input speech, and enhanced speech obtained with the example-
based approaches with (c) MFCCs and (d) bottleneck features
(BNFs), for “airport” noise.

Table 1: Real time factors (RTFs) of the example search ob-
tained with example-based approaches with MFCCs and bottle-
neck features (BNFs). A smaller RTF indicates a faster search.

ExB w/ MFCC 0.825
ExB w/ BNF 0.096

to achieve further performance improvements.
[17] proposes an example-based approach that does not

use the noisy speech corpora (but only uses the clean speech
corpus). This approach estimates the noise statistics in a noisy
speech input as with the filtering-based approaches and com-
bines them with the examples in the clean speech corpus to re-
construct the noisy input. This approach can be understood as
a hybrid of the filtering- and example-based approaches. This
is essentially different from our approach and would be worth
pursuing.

6. Conclusion and future work
We have proposed using bottleneck features (BNFs) extracted
from a DNN acoustic model for a robust example search in
example-based speech enhancement. Because of the BNFs’
noise robust and discriminative properties, the proposed ap-
proach provides high quality enhanced speech while achieving
a very fast example search.

Future work will include an evaluation using the other
corpora (e.g. [34–36]), a comparison with more sophisticated
DAEs (e.g. [8–12]), an evaluation using i-vectors (e.g. [31–33])
along with BNFs, and an evaluation as an ASR frontend.
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