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Abstract
This paper presents an extension of our recent work on

recognition of multiple bird species from their vocalisations by
incorporating an improved acoustic modelling. The acoustic
scene is segmented into spectro-temporal isolated segments by
employing a sinusoidal detection algorithm, which is able to
handle multiple simultaneous bird vocalisations. Each segment
is represented as a temporal sequence of frequencies of the de-
tected sinusoid. Each bird species is represented by a set of
hidden Markov models (HMMs), each HMM modelling a par-
ticular vocalisation element. A set of elements is discovered in
an unsupervised manner using a partial dynamic time warping
algorithm and agglomerative hierarchical clustering. Recogni-
tion of multiple bird species is performed based on maximis-
ing the likelihood of the set of detected segments on a subset
of bird species models, with a penalisation applied for increas-
ing the number of bird species. Experimental evaluations used
audio field recordings containing 30 bird species. Detected seg-
ments from several bird species are joined to simulate the pres-
ence of multiple bird species. It is demonstrated that the use of
improved acoustic modelling in conjunction with the maximum
likelihood score combination method provides considerable im-
provements over previous results and the use of majority voting.
Index Terms: multiple bird species recognition, HMM, vocal-
isation, element, unsupervised training, sinusoid detection

1. Introduction
Automatic recognition of bird species from their vocalisations
usually starts with a segmentation of the acoustic signal into
isolated segments. This has been performed using an energy-
based threshold decision, which requires an estimate of noise
level, e.g., [1], or by decomposing the acoustic scene into si-
nusoidal components [1, 2, 3, 4, 5]. A variety of feature rep-
resentations of and modelling approaches to bird vocalisations
have been explored. The use of conventional Mel-frequency
cepstral coefficients, employed by a number of studies, e.g.,
[1], is problematic in presence of concurrent vocalisations of
other birds/animals. Characterising a detected spectro-temporal
segment using a set of statistical descriptors, as employed
in [1, 2, 3, 6], may not capture well a more complex types of
vocalisation elements and may be susceptable to inaccuracies
in segmentation. In a case of tonal bird vocalisations, the use
of a sinusoidal detection for segmentation also offers a natural
way of representing the segment as a temporal sequence of the
frequencies of the detected sinusoid, which we here refer to as
frequency track. This representation was employed in few ear-
lier studies [1, 7] and also in our recent works [4, 8, 5, 9]. The
most commonly used modelling approaches include dynamic
time warping [10, 11], Gaussian mixture modeling [1, 4], and

hidden Markov models (HMMs) [1, 7, 12, 5].
Audio field recordings often contain vocalisations of mul-

tiple bird species. This issue has been addressed only in few
recent works. To tackle the problem of having multiple bird
species in the training data, the authors in [6] employed a multi-
instance multi-label (MIML) approach. This approach requires
that each segment is represented as a single feature vector,
which prevents the use of temporal modelling of segments. On
a similar task and data, there have recently been two bird classi-
fication challenges. The methods used by all contributors to the
first challenge are only briefly outlined in a summary paper [13].
The contributions to the second challenge are described in [14].
The contributions to these challenges were based on using the
MIML approach and a variety of pattern recognition techniques
that did not model the temporal evolution of segments.

This paper presents an extension of our recent study on
recognition of multiple bird species by incorporating an im-
proved acoustic modelling. While our paper [15] presented a
method for recognition of multiple bird species, the acoustic
models of each species consisted of a single HMM, with the
variety and variability of bird vocalisations being accounted for
by using several Gaussian mixture components per state. In this
paper, we represent each bird species by a set of HMMs, each
HMM modelling a particular type of vocalisation element. It
was shown in our previous work [9, 16] that the use of element
modelling can reduce the bird identification error rate by over
40%. The effect of such improved acoustic modelling on the
recognition of multiple bird species is unknown and this paper
aims to explore on this. As no element-level label information is
available, we first employ an unsupervised clustering approach
as presented in [8] to discover a set of vocalisation elements
for each species and then train each individual element HMM.
For a given audio recording used during the recognition, the
sinusoidal-based segmentation provides a set of variable-length
segments. The probability of each segment on each bird species
HMM calculated. The identity of the multiple bird species is
obtained based on maximising the likelihood of the set of seg-
ments on a subset of bird species models using the method in-
troduced in [15]. Experimental evaluations are performed using
field recordings from 30 bird species [17]. Experimental data
with multiple bird species are created by artificially mixing de-
tected segments of several bird species. Results are compared to
those obtained by representing each bird species using a single
HMM and to majority voting score combination methods.

2. Multiple bird species recognition
employing modelling of individual elements

This section provides description of individual components of
the recognition system, specifically, the approach we employed
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for segmentation of the audio signal and extraction of frequency
track features, the acoustic modelling based on using a single
HMM and multiple individual element HMMs for each bird
species, and the method for recognition of multiple bird species.
Each of these components was introduced separately in our re-
cent publications [5, 9, 15] where we refer the reader to for fur-
ther details. Throughout this paper, we consider ‘element’ as
the smallest structurally distinct unit of bird vocalisations, visi-
ble as a continuous line on a spectrogram [18].

2.1. Segmentation and estimation of frequency tracks

The segmentation of the audio signal and estimation of fre-
quency tracks is performed based on detection of sinusoidal
components in signal using the method we introduced in [19].
In brief summary, each peak in the magnitude spectrum of a sig-
nal frame is considered as a potential sinusoidal component. A
peak is characterised using a set of magnitude and phase spec-
tral features extracted around the peak. A model for sinusoidal
signals and noise is built and the detection is performed based
on maximum likelihood criterion. This segmentation is further
refined by discarding very short segments and segments of a low
energy – all these are considered to be detected by an accidental
error or to correspond to other vocalisations in the background.

An example of a spectrogram of an audio field recording
containing concurrent vocalisations of two bird species and the
final estimated segments are depicted in Figure 1. It can be seen
that the detected frequency tracks correspond well to vocalisa-
tions of birds and that this method can detect well vocalisations
which are concurrent in time but in different frequency regions.
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Figure 1: An example of a spectrogram (a) of audio field record-
ing and the corresponding estimated frequency tracks (b).

2.2. HMM-based modelling of bird vocalisations

The temporal evolution of frequency tracks of detected seg-
ments is modelled using a left-to-right HMMs, which are used
to represent the bird species.

As the baseline model, which was also used in our initial
work on multi bird species recognition in [15], we use a single
HMM to represent each bird species. This model is trained us-
ing the entire collection of the detected segments from all train-
ing recordings of that species. To account for the variety of
element patterns and variations of individual instances of vo-
calisations, the probability density function at each HMM state
is in this case modelled with a mixture of Gaussians.

To represent each bird species using a set of individual el-
ement HMMs was not straighforward as the element-level la-
bel information was not available and the set of element pat-
terns produced by each bird species was unknown. As such, we

first employed an unsupervised procedure to find a set of vo-
calisation elements and provide label information for the data
and then trained the individual element models using the con-
ventional Baum-Welch algorithm. The unsupervised procedure
was based on a modified dynamic time warping (DTW) algo-
rithm and an agglomerative hierarchical clustering. The modi-
fied DTW allows to search for parial and multiple matches be-
tween two given segments. For each found partial match, an
overall score is calculated based on the cummulative distance
obtained from the DTW, length of the matching path and the
ratio of the length of the matching path to the total length of the
path. Only the match with the highest overall score is used if
matches overlap. The overall similarity score is then used in an
agglomerative hierarchical clustering to arrive at a set of clusters
of vocalisation elements. We refer the reader for further details
to [8, 9]. As the obtained clusters of vocalisation patterns are
expected to be homogenous, the state output probability density
function (pdf) of each individual element HMM consists only of
a single Gaussian distribution. As we use only a given number
of clusters based on their occupancy, there will be remaining
clusters whose segments are not assigned to any of the selected
clusters. Thus, in addition to the individual element HMMs, we
also have a single HMM to model all these remaining segments.
To cover the variety of these remaining segments, the state pdf
of this model consists of several Gaussian mixture components.

An example of the state output pdf of nine trained individ-
ual element HMMs of a bird species is depicted in Figure 2. It
can be seen that each model provides a distinctive pattern.
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Figure 2: An example of the mean values of the state out-
put Gaussian pdf, modelling frequency track features, for nine
trained element HMMs of bird species Northern Cardinal. The
x- and y-axis denotes the HMM state and frequency index, re-
spectively.

2.3. Recognition of multiple bird species

We consider the identification of multiple bird species from a
finite set of species based on an utterance of test signal of a
given length. For a given utterance, the segmentation and fre-
quency track feature extraction step provides a set ofR detected
segments O={Os}Rs=1. Each segment s is represented by a se-
quence of features Os=(o1

s, . . . ,o
Ts
s ), where Ts is the number

of frames in the segment. We consider each detected segment as
an isolated vocalisation element. An approximation of the prob-
ability of each segment s on each bird species model λb, i.e.,
p(Os|λb), is obtained using the Viterbi algorithm. In the case
of using the system based on individual element models, the
probability is calculated on each element model and the highest
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one is used.
The set of segments may consist of vocalisations of a single

or multiple bird species. As such, we are facing a problem of
how to combine the scores obtained for each individual segment
by each bird species model in order to obtain the decision on the
number and the identity of the recognised bird species.

A possible approach to deal with this score combina-
tion could be to use for each segment only the information
about the best bird species model, i.e., the model achieving
maxb p(Os|λb). The number and identity of the bird species
recognised could be obtained based on majority counting, with
the criteria being, for instance, the number of segments or the
accummulated length of segments classified to each bird species
models. This approach may not work well in situations when
there is a larger ambiguity in recognising individual segments.

We approach this score combination problem as a problem
of partitioning of the entire set of segments and assigning each
partition to a bird species model in a way that the overall likeli-
hood is maximised. Let us consider that the set of segments O
is to be partitioned into K subsets, where the value of K corre-
sponds to the number of bird species. Let us denote each subset
byBi, i.e.,O=∪{Bi}Ki=1 andBi∩Bj=∅, and consider that the
subset Bi is assigned to a bird species model bi. The maximum
overall likelihood of the set O, denoted by P (K), is

P (K) = max
∀Bi;b1,...,bK

K∏
i=1

∏
Os∈Bi

p(Os|λbi) (1)

where the maximisation is over all the possible partitionings of
the set O into K subsets as well as over all the K partial per-
mutations out of the total number bird species models.

The direct implementation of Eq. 1 is computationally not
feasible. For instance, the number of ways to partition a set of
R=15 segments into K=3 sub-sets is over 2.3 million. How-
ever, the maximisation in Eq. 1 can be split into two steps.
First, for a given subset of models {b1, . . . , bK}, calculate the
likelihood of the best partitioning of O, which we denote by
P

(K)
b1,...,bK

. This likelihood can be calculated simply by assign-
ing each segment s, s=1, . . . , R to a model from the subset
{b1, . . . , bK} that achieves the highest likelihood. The calcula-
tion of P (K)

b1,...,bK
is then repeated for allK model combinations

out of the number of bird species. Finally, the likelihood P (K)

is obtained as maxb1,...,bK P
(K)
b1,...,bK

.
An incorporation of constraint on the minimum length of

signal assigned to each bird species can be useful to reduce
some accidental errors. However, the above procedure does not
allow for this. The calculation of the probability P (K), subject
to constraints, can be performed using binary linear program-
ming. An alternative procedure, which can find a close approx-
imation in a faster way, was introduced in [15].

Finally, the parameter K, i.e., number of bird species in
signal, is selected based on principles Bayesian information cri-
terion (BIC). Increasing the value of K effectively means that
we are allowing a more complex model to fit the data. As such,
the likelihood P (K) needs to be subjected to a penalisation. The
estimated K∗ can be obtained as

K∗ = arg max
K∈<1,...,Kmax>

logP (K) − α(K) (2)

and the set of recognised bird species {b1, . . . , bK}∗ is then ob-
tained as corresponding to P (K∗). The value of the penalisation
α(K) was chosen for each K based on experiments on simu-
lated mixture using the training data.

3. Experimental evaluations
3.1. Data description

Experimental evaluations were performed using field record-
ings from [17]. These are recordings in real world natural habi-
tats of birds, collected over several decades, mostly in the west-
ern United States. There are several files for each bird species,
each file is typically between one to ten minutes long. For each
recording, there is a label indicating the single bird species vo-
calising but there is no label information that would indicate the
start and end times of each bird vocalisation. As these are field
recordings, the audio contains also background environmental
noise, vocalisations of other birds/animals and human speech.

Data from randomly chosen 30 bird species was used (list
available at [20]). Each recording was split into training and
testing part in proportion of two to one, respectively. The data
used for testing was further split into utterances, where each
utterance consisted of signal containing approximately a given
length of detected segments. In total, there was 2126 utterances.
The utterances of one, two, and three seconds of the detected
segments contained by average 13, 20, and 40 segments, re-
spectively. In order to conduct methodological evaluations, vo-
calisations of multiple bird species were created by randomly
mixing set of detected segments from several bird species.

3.2. Experimental setup

Each detected segment was characterised by a sequence of 3
dimensional frequency track features, containing the frequency
value of the detected sinusoid and its temporal derivatives ob-
tained as in [21]. A left-to-right HMMs with no skip allowed
were used and these were built using the HTK [21]. The number
of HMM states was set to 13, which reflects the minimum al-
lowed length of the detected segment. The following setup was
based on our results presented in [9]. The baseline model, i.e.,
single HMM per bird species, used 80 Gaussian mixture com-
ponents per state. In the case of the individual element HMMs,
the number of individual element models was set to 70. Each
element model used a single Gaussian per state. In conjunction
with the element models we also used a single general HMM,
having 10 components Gaussian mixture model per state.

Performance is evaluated in terms of recognition cor-
rect, 100·Nc/N , and recognition accuracy, 100·(Nc−Ni)/N ,
where Nc, Ni and N is the number of correctly recognised,
inserted and total number of bird species in recordings.

3.3. Experimental results

First, we analysed recognition results when using only individ-
ual detected vocalisation segments in the case of single bird
species presence. Figure 3 depict histograms of the rank of
the correct bird species model obtained when using the baseline
single HMM per bird species model and the individual vocal-
isation element models. It can be seen that the correct model
was ranked as the one achieving the highest probability for only
27.2% of the segments when using the baseline model and this
increased to 43% in a case of the individual element models.
This shows that there is still a large proportion of the segments
for which the correct model is not the best recognised model.

Bird species recognition performance when only single bird
species is present for utterances containing three, two and one
seconds of the detected signal is 92.0%, 88.8% and 83.3% in
the case of using the baseline single HMM and 95.5%, 94.4%
and 90.2% in the case of using the element HMMs [9].

Now, we present results when there are multiple bird
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Figure 3: Histogram of rank statistics of the correct bird species
models, collected over all segments of all bird species.

species present. First, we consider separately the case with one,
two, or three bird species present, each species with 3 seconds
of the detected segments and we assume that the number of bird
species is known. Table 1 presents results obtained by using the
conventional majority voting method when employing the base-
line single HMM and individual element HMMs acoustic mod-
elling. It can be seen that the use of improved acoustic mod-
elling, i.e., element HMMs, provides significant performance
improvements. Using the accummulated length as the criteria
function, the performance drops only marginally when the num-
ber of bird species increases. Except for the single bird species
case, this criteria function provides better performance than the
use of counts.

Table 1: Bird species recognition correct (%) achieved by the
majority voting method for a given number of bird species
present when using single HMM and individual element HMMs.
Each species contained 3 seconds of the detected signal.

Number of bird Majority voting combination method
species present Single HMM Element HMMs

count length count length
1 species 63.1 63.7 91.1 89.6
2 species 54.9 61.4 84.3 89.0
3 species 51.7 61.3 80.0 88.4

Table 2 presents results obtained by using the proposed
maximum likelihood score combination method when employ-
ing the baseline single HMM and individual element HMMs.
Comparing the effect of the acoustic modelling, it can be seen
that the use of element models resulted in significant perfor-
mance improvement, especially when there are 2 and 3 bird
species present. In a case of using the constraints, the mini-
mum length of the signal was set to match the length of the
bird signal present, i.e., 3 seconds here, and as such, this rep-
resents an idealised best performance the method can achieve.
When using element modelling, the use of constraints resulted
in average in 12% relative error rate reduction. This is relatively
small performance improvement for the need of using a consid-
erably more computationally demanding algorithm. Comparing
the performance of the score combination methods when ele-
ment modelling is employed (see Table 1 and Table 2), we can
see that the maximum likelihood method achieved considerable
improvement over the majority voting – over 56% error rate re-
duction in average over all the number of species.

Finally, experimental results are presented for a given
length of the detected signal which may contain a varying num-

Table 2: Bird species recognition correct (%) achieved by the
maximum likelihood method for a given number of bird species
present when using single HMM and individual element HMMs.
Each species contained 3 seconds of the detected signal.

Number of bird Maximum Likelihood combination method
species present Single HMM Element HMMs

(constraints: (constraints:
no / yes) no / yes)

1 species 92.0 / 92.0 95.8 / 95.8
2 species 81.2 / 84.7 94.9 / 95.7
3 species 72.5 / 77.6 93.4 / 94.0

ber of bird species. The number of bird species was generated
randomly in the range from 1 to 3. Then, the set of vocalisation
segments of around 3 seconds of the detected signal was consid-
ered as follows: either 3 sec from 1 bird species, 1.5 sec from 2
bird species, or 1 sec from 3 bird species. The constraint on the
minimum length of the signal assigned to a bird species model
was set to 1 second. Results are presented in Table 3. It can be
seen that there is only a relatively small drop in recognition cor-
rect, from 91.3% to 89.2%, when the number of bird species is
estimated as opposed to being known. The recognition accuracy
is 85.4% due to insertions.

Table 3: Bird species recognition correct and accuracy (%)
achieved by the maximum likelihood method when one, two, or
three bird species are present in a given utterance of 3 seconds
of the detected signal.

Number of Maximum Likelihood combination method
bird with element HMMs

species Rec. Corr. Rec. Acc.
known 91.3 91.3

estimated 89.2 85.4

4. Conclusion
This paper presented an extension of our work on recogni-
tion of multiple bird species. A method for detection of si-
nusoidal components was employed to decompose the acous-
tic scene into isolated time-frequency segments. Each segment
was represented as a temporal sequence of 3 dimensional vec-
tors, consisting of the detected sinusoid frequency and its tem-
poral derivatives. Each bird species was represented by a set
of HMMs, each HMM modelling individual vocalisation ele-
ment type. Training of element HMMs was performed in an
unsupervised manner. In a given recording, a set of segments is
detected. The recognition decision on the number and identity
of bird species was performed based on finding a subset of mod-
els that achieved maximum likelihood on a given set of detected
segments, with a penalisation applied for increasing the number
of models used. Experimental results demonstrated that the use
of element modelling and maximum likelihood segment score
combination provided considerable improvements over previ-
ous results and over majority voting methods.
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