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Abstract

Deep Neural Network (DNN) have been extensively used
in Automatic Speech Recognition (ASR) applications. Very re-
cently, DNNs have also found application in detecting natural
vs. spoofed speech at ASV spoof challenge held at INTER-
SPEECH 2015. Along the similar lines, in this work, we pro-
pose a new feature extraction architecture of DNN called the
subband autoencoder (SBAE) for spoof detection task. The
SBAE is inspired by the human auditory system and extracts
features from the speech spectrum in an unsupervised man-
ner. The features derived from SBAE are compared with state-
of-the-art Mel Frequency Cepstral Coefficient (MFCC) fea-
tures. The experiments were performed on ASV spoof chal-
lenge database and the performance was evaluated using Equal
Error Rate (EER). It was observed that on the evaluation set,
MEFCC features with 36-dimensional (static+ A+AA) features
gave 4.32% EER which reduced to 2.9% when 36-dimensional
SBAE features were used. Further on fusing SBAE features at
score-level with MFCC, a further reduction till /.93% EER was
observed. This improvement in EER was due to the fact that
the dynamics of SBAE features captured significant spoof spe-
cific characteristics leading to detect significantly even vocoder-
independent speech, which is not the case for MFCC.

Index Terms Subband autoncoder, spoof detection, vocoder
speech.

1. Introduction

Developing countermeasures for the task of anti-spoofing for
Automatic Speaker Verification (ASV) systems has found its
application in safeguarding ASV systems against threats to
spoofing attacks. ASV systems are known to be vulnerable
to spoofing attacks due to replay, impersonation (mimicking),
speech synthesis or voice conversion. Detailed analysis of
the effect of these attacks on ASV systems is shown in [1].
Synthetic Speech (SS) and Voice Converted (VC) speech have
shown to severely affect the performance of ASV systems when
used as an attack. Easy availability through open sources and
also the use of adapted Hidden Markov Models (HMMs) have
made it possible to generate speech for any speaker. This
is not the case for replay and impersonation attacks. Previ-
ously, the work on developing countermeasures was limited to
non-uniform databases and known spoofs. Very recently, the
ASV spoof 2015 challenge held as a special session of IN-
TERSPEECH 2015 [2] that used the Spoofing Anti-spoofing
(SAS) database [3]. The database provided a common base for
evaluating anti-spoofing countermeasures even on unknown at-
tacks. Several countermeasures were proposed at the challenge
to tackle known and unknown attacks. The results in terms
of Equal Error Rate (EER) were returned by the organizers.
Among these countermeasures included phase-based counter-
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measures [4-6], modified group-delay phase features [7], [8],
wavelet-based features [9], [10], linear prediction-based fea-
tures [11], [12], etc. In addition, to these, with the develop-
ment of Deep Neural Network (DNN) in the field on Automatic
Speech Recognition (ASR) and Speaker Verification (SV), these
approaches have found initially its way in detecting spoofed
speech.

In [13], DNN-based classifiers were used for spoof detec-
tion task using Linear Frequency Cepstral Coefficients (LFCCs)
and preprocessed Relative Phase Shift (RPS). This approach
achieved as less than 0./% EER on vocoded speech (known
attacks). However, an EER of 40% was observed on vocoder
independent spoof (unknown attacks). Next, in [14] a super-
vised DNN was trained using filterbank features on the training
data of the ASV spoof challenge database. This approach was
able to achieve an average EER of about 0.058% on known at-
tacks and 5% on unknown attacks with 22% EER reported for
a vocoder-independent spoof. The combination of several fea-
tures such as Mel Frequency Cepstral Coefficients (MFCCs),
Mel Cepstral Coefficients (MCCs), Band-Aperiodicity (BAP)
and pitch (LFp) was used in this work. Both approaches in
[13] and [14] used supervised learning for feature extraction for
which, a large amount of labeled data is needed.

Recently, deep learning methods are gaining popularity
for feature extraction from the raw data in an unsupervised
manner. The Autoencoder (AE) is such a network which
uses DNN or Restricted Boltzmann Machine (RBM) to extract
low-dimensional information from high-dimensional raw data
[15-18]. The AE have been used in various applications such
as denoising front-end for such ASR task [19] [20], in finding
mapping between noisy and clean speech spectrum for noise re-
duction in ASR system [21], speech enhancement task in [22]
and speech coding [23]. Very recently, authors in [24] used AE
for noise reduction in speaker verification system. Deep AE
was used in [25] for noise-aware training for noisy ASR. Fea-
tures learned by deep AE were used for Statistical Parametric
Speech Synthesis (SPSS) using DNN in [26]. Despite these
properties, AE features are not popular as the acoustic features
in most of the speech technology applications. The inability to
control the form of the representation which is learned by AE
leads some researchers to criticize them as uninterpretable black
boxes [27].

To overcome this limitation, many variants of the AE have
been proposed. A new architecture called transforming AE was
used in [27] to detect acoustic events in speech signal for ASR
task. Phone recognition task was done using mean-covariance
RBM in [28]. In [29], authors proposed an architecture of AE in
which decoding block was constrained for stretching and com-
pressing frequency-domain for ASR task. In this paper, we pro-
pose a new architecture of AE, namely, subband AE (SBAE) for
feature extraction from speech spectrum. Proposed architecture
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Figure 1: Architecture of proposed SBAE.

uses specific domain knowledge about speech processing and
incorporates it in the architecture of AE. Inspired by Human
Auditory System (HAS), speech is generally processed in sub-
bands. We have restricted the connectivity of units in AE in
such a way that each unit in first hidden layer captures the in-
formation about a particular band of the speech spectrum. This
property of our architecture makes it more suitable for speech
technology application. We have used features extracted by
SBAE for spoof detection task. To the best of authors’ knowl-
edge, this is the first attempt to use features learned by unsu-
pervised machine learning algorithm for spoof speech detection
task.

2. Proposed Subband Autoencoder (SBAE)
2.1. Architecture of subband AE

Figure 1 shows the architecture of proposed SBAE. The main
difference between proposed SBAE architecture and existing ar-
chitecture of AE as in [16] is the connectivity of neurons or units
immediately after the input layer. In AE, each unit in the layer
immediately after input layer is connected with all the units of
the previous layer. While in the case of proposed SBAE, the
connectivity is restricted. In the proposed architecture, each
unit of the first hidden layer is connected with a particular fre-
quency band of input spectrogram. Hence, each unit in the
first layer will encode the information about that particular fre-
quency band with which it is connected. The decoding structure
is same as a traditional AE with full connectivity [16]. The band
structure of restricted connectivity for neurons is same as Mel
filterbank, implying one neuron in the first layer is connected
with the frequencies of one Mel filterbank. This architecture is
nearer to HAS and provides more meaningful information than
AE in the case of speech. Mathematically, operation of the sub-
band layer can be represented as follows:

ai = f(O_ Wi x x;), e))
J

where a; is i*" subband feature, z; is short-time power cor-
responding to j*" filterbank frequencies and Wllj are weights
corresponding to i*" subband feature. f represents nonlinear
activation function of the neuron. The functionality of preced-
ing layers of SBAE is same as of a traditional AE [16]. Pro-
posed SBAE architecture can be trained by back-propagation
similarly as an AE. The a; learned by SBAE can be used as low-
dimensional features for other speech technology tasks, too.
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These features are different from filterbank energies in follow-
ing ways: First difference is in the method of extracting fea-
tures, i.e., MFCCs or filterbank energies are handcrafted fea-
tures while SBAE features are learned by a machine learning
approach. The second difference is that filterbank energies are
extracted in a linear way, while SBAE features are extracted in
a nonlinear manner. The latter property of SBAE features may
provide some more information about speech spectrum which
cannot be captured by linear processing.

2.2. Analysis of SBAE features for spoof detection

Figure 2 shows speech waveform, Mel filterbank energies and
proposed SBAE features for natural speech and various spoof-
ing attacks. It can be observed that both features show varia-
tions for different spoof attacks, hence, they both can be used
for spoof detection task. Moreover, both features are invertible,
implying speech spectrum can be reconstructed using both fea-
tures. To quantify reconstruction ability of both the features,
average Log Spectral Distortion (LSD) between reconstructed
spectrum and the original spectrum was calculated for 50 natu-
ral utterances of ASVspoof 2015 database. LSD in case of pro-
posed features was 5.0/ dB and using filterbank energies, it was
9.04 dB. Hence, proposed features provide better reconstruc-
tion and they can be believed to capture underlying information
of speech spectrum for different conditions. However, it is no-
ticeable that proposed features do not show much variations in
low-frequency regions for different conditions. It is also evident
that proposed features are more sensitive to small variations in
the spectrum due to nonlinear processing. This effect can be
seen by observing features of two consecutive frames. Unlike
filterbank energies, proposed features vary more for consecu-
tive frames (in the time-domain). Thus, SBAE features may
capture more dynamic information of speech spectrum. Similar
findings for AE features were observed in [26].

3. Spoof Detection System
3.1. Parameterization

For feature extraction, the speech signals were divided into
frames with 25 ms frame duration and 50% overlap. The
STRAIGHT spectrum was used for feature extraction using
SBAE [30]. The configuration of the network was 513-40-250-
513, implying 513 units in input layer, 40 units in subband layer,
250 units in second layer, and 513 units in output layer. The in-
put and output data was normalized between 0-/ for training.
The SBAE trained on training data was used for feature extrac-
tion from validation and evaluation datasets. Here, 40 units in
subband layer gives 40-D (dimensional) subband features. To
compare the performance of proposed features with the /2-D
MFCCs, 40-D SBAE features were converted to /2-D features
by following process. As it can be observed from Figure 2,
not all 40 SBAE features vary significantly for different types
of speech. The SBAE features corresponding to lower bands
have almost constant values for natural and spoofed speech. The
SBAE features for first /6 bands were removed and features cor-
responding to rest of the 24 bands were used. Hence, SBAE fea-
tures corresponding to higher bands are considered for discrim-
ination task. For further dimensionality reduction, the average
value of two consecutive subband features was taken. Hence,
by this method, /2-D feature vector was generated to compare
with 712-D MFCCs. As a similarity check, our preliminary ex-
periments suggested that EERs on development set using 40-D
features and reduced /2-D features were almost similar.
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Figure 2: (a) Waveform of an utterance, (b) mel filterbank energies and (c) SBAE features for panel-1: Natural speech, panel-II:
vocoder-based VC speech, panel-III: vocoder-based SS and panel-1V: SS using vocoder-independent (Unit Selection Synthesis (USS)).

3.2. Details of Database

The database provided for the ASVspoof 2015 challenge is used
for this study [3]. Brief details of the database are given in Table
L. Details of the spoofing algorithms (S) are provided in [2]. The
training and development dataset consisted of utterance gener-
ated by five spoofing algorithms (S1-S5) while evaluation data
was based on S1-S10, i.e., both known and previously unseen
(i.e., unknown) attacks. The S3, S4 and S10 are SS spoof and
remaining are VC spoofs. Spoofing algorithm S5 uses Mel Log
Spectrum Approximation (MLSA) filter [31] and S10 is imple-
mented with open-source MARY TTS system [32] that uses the
FESTIVAL framework [33] for speech synthesis. The remain-
ing spoofs were generated by STRAIGHT vocoder.

Table 1: Details of the ASV spoof 2015 challenge database
No. of Speakers No. of Utterances

Dataset Male Female Genuine Spoofed
Training set 10 15 3750 12625
Development set 15 20 3497 49875
Evaluation set 20 26 9404 184000

3.3. Performance Measures

A stand-alone detector system may falsely reject a genuine trial
to the ASV system or falsely accept a spoof or impostor trial
and allow it to pass through an ASV system. The error rates
are expressed as False Acceptance Rate (FAR), i.e., ratio of FA
to an actual number of positives (natural) and False Rejection
Rate (FRR), i.e., ratio of FR to an actual number of negatives
(spoofed). Based on the FRR and FAR, the Detection Error
Tradeoff (DET) curve is used to measure the performance of
various features [34]. It gives uniform treatment to both FAR
and FRR for evaluation of system performance. In the DET
curve, the operating point where FAR and FRR becomes equal
is referred to as EER and is used as a performance measure.

3.4. Model Training and Score-level Fusion

Here, we use a binary Gaussian Mixture Model (GMM) classi-
fier with /28 mixtures for modeling the classes corresponding
to natural and spoofed speech on the training set. GMM for nat-
ural speech (Anq¢) is built using genuine utterances and GMM
for spoofed speech (Asyn ) is built with spoofed utterances. Fi-
nal scores on a test sequence Y are represented in terms of
log-likelihood ratio (LLR) obtained from the likelihood values
of natural and spoofed speech model. The decision of the test
speech being human or spoof is based on the LLR, i.e.,

LLR =log(p (Y|Anat)) —log(p (Y[Asyn)),

where (Y |Anat) and (Y|Asyrn) are the likelihood scores from
the GMM for the human speech and spoofed speech, respec-
tively. To utilize possible complementary information between
features, their score-level fusion is preferred, i.e.,

Lchombine = (1 - af)Lkaeaturel + OCfLLk:featurzﬁ,

where L Lkcompine 1S the combined log-likelihood score of two
scores featurel and feature2. The weights of the scores are de-
cided by fusion factor oy and are optimized w.r.t performance
of system after fusion. We consider score-level fusion to know
the contribution of the individual set of features and to avoid the
higher dimensionality due to the feature-level fusion of features.

4. Experimental Results
4.1. Results on the Development Set

Using the feature extraction process mentioned in Section 4, the
features are extracted and GMMs are built on the training set.
The results on the development set for MFCC and SBAE are
shown in Table 2. It is observed from Table 2 that for the static
features the MFCC features gave an EER of 3.3 % while for the
SBAE features an EER of 5.37% is obtained. On using the A
features for MFCC and SBAE, the EER is almost similar, i.e.,
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Table 2: The results on development set in % EER for MFCC, SBAE and their score-level fusion at various a:f

featurel Fusion Factor feature2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SBAE: s (static) 538 438 3.68 323 288 271 260 272 286 3.06 326 MFCC: s (static)
SBAE: s+A 237 1.8 154 137 137 140 146 157 172 192 217 MFCC:s+A
SBAE: s+A+AA 149 1.06 0.83 071 0.71 0.77 086 100 1.14 134 1.60 MFCC:s+A+AA

Table 3: The results in % EER in terms of individual attacks, average known attacks (Kn.) and average unknown attacks (Unkn.) on

the evaluation data for MFCC, SBAE and their score-level fusion for ooy = 0.3

VC VC SS SS VC VC vVC VC VC SS
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn.  Unkn. Average
MFCC: s (static) 0.11 3.78 0.00 0.00 451 3.64 040 0.03 1.01 4147 1.68 9.31 5.50
MFCC:s+A 0.02 158 0.00 0.00 1.63 1.75 0.10 0.00 0.00 4958 0.65 10.29 5.47
MFCC: s+ A+AA 001 099 0.00 0.00 0.83 090 005 0.00 0.00 39.72 0.37 8.13 4.25
SBAE: s 041 471 0.00 0.00 1460 1038 039 034 3.05 5696 394 1422 9.08
SBAE: s+A 0.04 3.04 0.00 0.00 3.57 407 023 026 1.01 3488 1.33 8.09 4.71
SBAE: s+ A+AA 003 299 0.00 0.00 226 297 011 052 091 1509 1.06 3.92 2.49
SBAE+MFCC: s+A+AA 001 093 000 0.00 082 088 0.05 002 0.13 1652 0.35 3.52 1.93
40 F7 T IS

2.17% and 2.37% respectively. Furthermore, the use of AA 5 \‘\ o _;:F%Em

features the EER of SBAE reduces to /.49% which is slightly NS AN o mrwrec

better than MFCC with an EER of /.6%. Thus, on adding the ~ I EER: SBABMFCC

dynamic features the % EER for SBAE features reduces sig- \ . ‘\\

nificantly as compared to MFCC. This happens due to the fact gwor '

that proposed features, along with the dynamic features (A and z '

AA) capture more spectral variation than only static features. 20 R

On the other hand, when traditional 36-D AE features were used by g *

an EER of 7.9% was obtained. Hence, in this work, we do =2 N

not consider AE features for further analysis. To use the pos- . ’ '

sible complementary information present in SBAE and MFCC, \ \

a score-level fusion was carried out. It is observed that with a T "1:\‘

fusion factor of around o= 0.3, the EER achieved was 0.715% s b :"‘\!:_

which is almost half as compared to using MFCC and SBAE i

features alone. Thus, SBAE features captured complementary
information as compared to MFCC features.

4.2. Results on the Evaluation Set

The utterances in the development set consisted of the same
type of spoof as used in the training. However, the anti-spoofing
ability of the countermeasure depends on the performance for
unknown spoofing attacks. To that effect, the performance of
the features is tested on the evaluation set which consists of
unknown vocoder-based spoofs and one vocoder independent
spoof. The results in % EER are shown in Table 3. It is observed
that for known attacks (S1-S5) the average EER of MFCC and
SBAE features (static+ A+AA) are 0.37% and 1.06%, respec-
tively. These evaluations do not include the S10 spoof. Con-
sidering the average EER for all the unknown attacks the EER
with MFCC is 8.13% as compared to 3.92% for SBAE features.
This is because the MFCC with static and the dynamic features
gives an EER of around 40% for S10 spoof, while SBAE fea-
tures give as low as 15%. Hence, the average performance of the
SBAE features for unknown attacks is much better. This sug-
gests that proposed features capture finer variations in speech
spectrum in more precise way than MFCCs due to nonlinear
processing. It was observed on the development set that fusion
of MFCC and SBAE gave better performance than both the fea-
tures used individually. Thus, the score-level fusion was applied
on the evaluation set using ay= 0.3. The better performance
of MFCC on known attacks and SBAE on unknown attacks is
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Figure 3: The DET curve on the evaluation set for MFCC fea-
tures, SBAE features and score-level fusion of MFCC and SBAE
features at aiy=0.3.
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combined resulting in the reduction of average EER to 1.93 %
as compared to 4.25 % for MFCC and 2.49 % for SBAE. The
DET curve for the MFCC, SBAE and fusion of MFCC an SBAE
is shown in Figure 3. It is observed that the MFCC had large
FRR than SBAE features and slightly better FAR than SBAE at
low FRR. However, on fusing both MFCC and SBAE, the DET
curve shows better performance over all the operating points.

5. Summary and Conclusions

In this paper, we propose novel SBAE features for the spoof
detection task. The results using SBAE features are compared
with MFCC features. Due to the fact that the SBAE features
capture more dynamic information as compared to MFCC, the
relative decrease in % EER is more for SBAE features com-
pared to MFCC features. The MFCC features performed well
for known attacks and the SBAE features performed much bet-
ter for the unknown attacks. Therefore, the combination of both
the SBAE and MFCC features at score-level reduces the aver-
age % EER. It was also observed that the SBAE features work
well on vocoder-independent spoof as compared to MFCC.
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