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Abstract
Tone information provides a strong distinction for many am-
biguous characters in Mandarin Chinese. The use of tonal
acoustic units and F0 related tonal features have been shown to
be effective at improving the accuracy of Mandarin automatic
speech recognition (ASR) systems, as F0 contains the most
prominent tonal information for distinguishing words that are
phonemically identical. Both long-term temporal intonations
and short-term quick variations coexist in F0. Using untreated
F0 as an acoustic feature renders the F0 contour patterns differ-
ently from their citation form and downplays the significance of
tonal information in ASR. In this paper, we explore the empir-
ical mode decomposition (EMD) on F0 contours to reconstruct
F0 related tonal features with a view to removing the compo-
nents that are irrelevant for Mandarin ASR. We investigate both
GMM-HMM and DNN-HMM based acoustic modeling with
the reconstructed tonal features. In comparison with the base-
line systems using typical tonal features, our best system using
reconstructed tonal features leads to a 4.5% relative word error
rate reduction for the GMM-HMM system and a 3.5% relative
word error rate reduction for the DNN-HMM system.
Index Terms: tonal feature, F0 contour, empirical mode
decomposition (EMD), deep neural network (DNN), Mandarin
speech recognition

1. Introduction
Mandarin Chinese is a tonal language that uses tone as the dis-
criminative information for ambiguous characters. Many previ-
ous studies incorporating tonal information in continuous Man-
darin speech recognition have showed great progress [1]–[7].
Two major methodologies have been used to integrate tonal in-
formation into Mandarin speech recognition – explicit and em-
bedded tone modeling. In explicit tone modeling, tonal infor-
mation and acoustic evidence are independently modeled and
recognized [5]–[7], whereas in embedded tone modeling, tonal
acoustic units are used and fundamental frequency (F0) features
are directly augmented to spectral features, and are recognized
as part of the existing system [1, 2].

In Mandarin, F0 is affected by many factors, such as long-
term variations over the duration of prosodic units and short-
term quick variations in the accented syllables [8, 9]. The F0

contours usually characterize four tonal patterns of Mandarin
Chinese in both methodologies mentioned above. However, sur-
face F0 contours of the speech signal show extensive variations,
e.g., F0 patterns of lexical tones influenced by contextual char-
acters or tonal coarticulation, adjacent tones and phrase intona-

tion [8]. Although this tone modeling obtains good performance
in most state-of-the-art Mandarin automatic speech recogni-
tion (ASR) systems, the variations could render the models
over-simplified tonal information and acoustic evidence, lost-
ing richer information between them [10].

To estimate the F0 contours for ASR purposes, it is usually
preferable to use a pitch track from a speech signal. Because of
the specific nature of F0, such as the fact that it is not defined
for unvoiced regions, special treatment is required if it is to be
used as an acoustic feature. There have been many effective
techniques proposed for estimating F0. RAPT [11] is a time
domain algorithm for pitch tracking that makes a binary voic-
ing classification regarding voiced or unvoiced frames in the
speech signal. SAcC [12] is a new time domain algorithm that
focuses on classifying the autocorrelations of a set of subbands
using an MLP neural network. It provides robustness to noisy
conditions in particular. The Kaldi pitch tracker [14] is a highly
modified version of RAPT, and has been confirmed to achieve
better accuracy than other canonical pitch trackers [11]–[13]
for ASR systems. Conventionally, extracted F0 related tonal
features directly serve as acoustic features with tone augmen-
tation. Although this approach alleviates the variance problems
in acoustic modeling and improves ASR performance, untreated
F0 contours are still superimposed together with long-term tem-
poral variations (intonation), short-term quick variations (co-
articulations), and other factors that are irrelevant acoustic cue
of tonal language for ASR purpose.

In this paper, we explore the empirical mode decomposi-
tion (EMD) [15, 16] method on an F0 contour, which aims to
reconstruct F0 related tonal features with a view to removing
the components of tonal information that are irrelevant for Man-
darin speech recognition, by recombining a collection of intrin-
sic mode functions (IMF). The incentive for exploring EMD on
F0 is to adaptively obtain a series of particular pitch oscilla-
tions characterized by the physical time scales. Derived IMFs
can obtain a full energy-frequency-time distribution of the tonal
features, which include local energy, instantaneous frequency,
and temporal intonation. We evaluated the recognition perfor-
mance of both GMM-HMM and DNN-HMM based approaches
to acoustic modeling along with the reconstructed F0 related
tonal features. The experimental results demonstrate that the
reconstructed tonal features, as complementary tonal informa-
tion, achieved a better performance than the other methods.

This paper is structured as follows. In Section 2, we illus-
trate F0 extraction and the EMD analysis of F0 contours. The
baseline Mandarin systems and experimental results are pre-
sented in Section 3. We discuss the results and conclude with a
brief summary of our study in Section 4.
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2. F0 extraction and EMD analysis of
the F0 contour

2.1. F0 related tonal features in ASR for Mandarin Chinese

The use of F0 as an acoustic feature greatly improves the per-
formance of the ASR systems of tonal languages. However,
the F0 variations of tonal languages actually are constrained by
coupling both individual lexical tones and various other factors,
together with the temporal structures of the speech signal. In
Mandarin Chinese, the F0 contours of speech generally simul-
taneously manifest lexical tones at a local level and long-term
temporal intonation at a global level. Previous studies have
demonstrated that intonation perturbs lexical tones in terms of
the change of the F0 values of a speech signal when the sentence
is uttered as an interrogatory narrative or with emphasized emo-
tion [8, 9]. A few studies have found that the lexical tones are
the most important factors for determining the local F0 contours
[18].

2.2. Effective tonal features extraction

To incorporate tonal information into the modeling features, we
exploited the Kaldi pitch tracker [14] to extract the F0 related
tonal features and append them to the acoustic features. The
pitch tracking algorithm used in the Kaldi ASR toolkit [17] is
based on the famous get_f0 [11] algorithm for F0 estimation,
but is a highly modified version of it. The main difference is that
the Kaldi pitch tracker does not make a hard decision whether
any given frame is voiced or unvoiced; instead, it assigns a
pitch, even to unvoiced frames while constraining the pitch tra-
jectory to be continuous [14]. After tracking, post-processing is
used to interpolate the unvoiced region to avoid variance prob-
lems in acoustic modeling, and a short-time smoothing is used
to reduce the noise in F0.

The tonal features that serve as the baseline system in-
clude 3-element vectors, consisting of the probability of voic-
ing (POV), F0 and delta F0. The POV feature is estimated
from another pitch tracker called SAcC [12], using log((p +
0.0001)/(1.0001 − p)) as the resulting value, where 0 ≤ p ≤
1 is the voicing probability from SAcC. This aims to reduce the
influence of pitch extraction errors. The details of F0 smoothing
and normalization are discussed in the next section.

2.3. EMD analysis of F0 contour

In contrast to tones, intonation refers to the structured variation
in F0 that is not determined by lexical distinctions. The acous-
tic correlates of lexical tones and intonation inevitably interact
with each other [19] because of the use of the same acoustic pa-
rameter F0. Considering the purpose of ASR, intonation should
be removed or normalized out from F0 because it does not carry
any lexical meaning for Mandarin Chinese. We hence investi-
gate the structure of F0 related tonal features using an EMD
analysis of the F0 contour.

EMD [15] is used as a temporal signal decomposition
method to analyze data from nonstationary and nonlinear pro-
cesses, and usually aims to filter out additive noise from the
speech signal. Signals analyzed by EMD are decomposed into
a series of oscillatory IMFs and a residual. The main purpose
of EMD in this paper is not for signal denoising or data com-
pression; instead, it is for the analysis of the F0 related tonal
feature, which aims to separate redundant components from rel-
evant tonal information for effective tone modeling.

Combined with the description in Section 2.1, there are two

main advantages to adopting EMD to extract relevant tonal in-
formation from the utterance F0 contour. First, EMD is able to
identify F0 between two consecutive extreme, and decomposed
F0 contours can obtain the upper and lower envelope curves
by interpolating local values. In contrast to lexical tones at a
local level, long-term temporal intonation is mainly associated
with tones at a global level. EMD should decompose the local
tones and global intonation into individual components. Sec-
ond, EMD is able to analyze F0 in an entirely adaptive way,
which is completely based on the local properties of F0. It could
assure the completeness of the F0 contour reconstruction using
IMFs.

2.3.1. EMD algorithm

The EMD decomposes an input signal into a series of IMFs
through an iterative process called sifting. Each IMF needs to
satisfy two conditions: (i) over the whole data, the numbers of
extrema and zero crossings must either equal or differ at most
by one and (ii) at any point, the mean value of the envelope de-
fined by the local maxima and minima is a constant zero. The
sifting process extracts a series of IMFs, which serves two main
purposes: one is to eliminate the mutual overlapping waveform,
and the other is to make a more symmetrical waveform. The
main decomposition process can be summarized by the follow-
ing steps:

(1) Calculate local mean value ml(t) of input signal x(t) from
extreme upper eu(t) and lower el(t) envelopes as follows:
ml(t) = (eu(t) + el(t))/2.

(2) Compute the difference based on the sifting process using
hl(t) = x(t)−ml(t).

(3) Iterate on the residual local trend until the correspond-
ing difference satisfies the IMF properties, i.e., hlk (t) =
hl(k−1)(t)−mlk (t) at the (k − 1)th sifting.

(4) Denote the corresponding IMF component by cn(t) after
taking the (k − 1)th sifting. Here cn(t) = hlk(t).

The sifting process repeats several times until there are less than
two extrema in the final computed residual. Input signal x(t) is
hence decomposed into a finite number of N IMFs and a final
residual r(t), as follows:

x(t) =

N∑
n=1

IMFn(t) + r(t)

2.3.2. Reconstruction of F0 contour

In the EMD algorithm, we note that the IMFs may have fre-
quency overlaps, except at an instant time, and the instantaneous
frequencies represented by each IMF are different. An example
of the F0 of an utterance from a data corpus and its IMF com-
ponents are shown in Figure 1. The figure shows that :

(1) The upper order IMFs (e.g., C1 and C2) represent the high-
frequency content of F0, and are composed of faster oscil-
lations than the middle (C3–C5) and lower order IMFs (C6
and C7), which in turn have faster fluctuations step-by-step.

(2) The EMD separates high-frequency versus low-frequency
among the IMFs at each time interval.

(3) The different levels of IMF components mostly represent
the F0 variations between the IMFs at each time interval.
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Figure 1: IMFs obtained from the decomposition of the F0 of
a speech signal. Here, "C#" denotes the different level of IMF
components from upper order (C1) to lower order (C7).

The EMD behavior can be regarded as a filter bank with
overlapping band-pass filters [20]. In an EMD analysis of the
F0 contour, the upper order IMFs are interpreted as the output
of a high-pass filter, which usually represents the short tempo-
ral variation of the F0 contour, such as quick co-articulation.
The middle-order IMFs are interpreted as the output of the up-
per half-band part, which usually represents lexical tonal pat-
terns. The remaining IMFs are roughly composed of long-term
temporal variations caused by intonation. Among the decom-
posed F0 variation, we therefore infer that the middle-order
IMFs have the prominent lexical tonal information needed for
acoustic model training.

2.3.3. Normalization of reconstructed F0

A short-time smoothing method called moving window normal-
ization [21] was used to reduce the noise of F0 in this study.
The difference between the baseline systems and our proposed
system is that we normalize the reconstructed F0 related tonal
features with a POV-weighted mean subtraction for Mandarin
ASR. The weighted average reconstructed pitch value was sub-
tracted at each time t. The F0 contour is computed over a win-
dow of width 151 frames centered at time t and weighted by the
POV value p mentioned in Section 2.2.

Figure 2 shows the original raw F0 contour of utterance
from the data corpus, and the normalized F0 features using the
Kaldi pitch tracker (i.e., the baseline tonal feature), and the nor-
malized F0 related tonal features by recombining the IMF com-
ponents for acoustic modeling. The vertical dashed lines show
the toneme boundaries. As shown in Figure 2, the normalized
F0 from IMF reconstruction presents a more correct citation
form of the lexical tone compared with the normalized original
F0 using the Kaldi pitch tracker. According to the study of [9],
intonation frequently produces lexical tones at the initial and fi-
nal positions of a sentence that behave differently from those
at other positions, and the reconstructed F0 improved the shape
and scale of the lexical tones perturbed by these intonation, such
as the initial tone 4 ("jian4") and the final one ("xi4") in Fig. 2.

Figure 2: Raw F0 contour (top) and normalized F0 features
(bottom) using the Kaldi pitch tracker and IMF reconstruction
for acoustic modeling in ASR systems. The vertical dashed lines
show the toneme boundaries.

3. Experiments
Compared to state-of-the-art GMM-HMMs, deep neural net-
work (DNNs) have well-documented advantages for large vo-
cabulary continuous speech recognition. In this section, we de-
scribe both GMM-HMM and DNN-HMM based Mandarin sys-
tems with typical tonal features, as these serve as our baseline
systems.

3.1. Data corpus

Training sets for the acoustic modeling were constructed us-
ing 1997 Mandarin Broadcast News Speech data (HUB4-
NE, LDC98S73), which contains about 27 h of speech, and
the GALE Phase 2 Chinese Broadcast Conversation Speech
(LDC2013S04), which contains about 97 h of speech. Devel-
opment sets were taken from the training data, and consisting
of 1 h of HUB4-NE and 3 h of the GALE Phase 2 Speech.

In addition to the transcripts of the acoustic training speech
(3.7M characters), the GALE Phase 1 Chinese Broadcast News
parallel text parts 1, 2, and 3 (LDC2007T23, LDC2008T08, and
LDC2008T18) were added to the training data for the language
modeling (LM) [22]. Meanwhile, the training texts provided
by the HUB4 task (LDC95T13), containing 186M characters,
were used to extend coverage of the LM. Two 4-gram based
LMs were used in the evaluation, one was the LM trained by all
the transcripts of the acoustic training speech, and the other is
trained by the LM training text mentioned above. A linear in-
terpolation of the two LMs was trained using the SRILM toolkit
[23] with Kneser-Ney smoothing. The pronunciation lexicon of
the LM consisted of about 100K words.

In this paper, we report the experiments on broad-
cast conversation speech, which was randomly selected from
LDC2013S04 included about 3 h of speech.

3.2. Acoustic feature extraction

The acoustic models are trained on Mel-frequency cepstral co-
efficients (MFCC), which were extracted using a 25ms window
and 10ms frame shift. Each frame of speech data was repre-
sented by a 39-dimensional feature vector including 13 MFCCs
with their first and second derivatives. The three-dimensional
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Table 1: Recognition results (in %WER ) for GMM-HMM and
DNN-HMM systems using various models with different types

of features.

Feature Model WER
ML SAT GMM 27.63

MFCC MMI SAT GMM 25.40
DNN (cross-entropy) 21.66

ML SAT GMM 25.86
MFCC + pitch MMI SAT GMM 24.32

(baseline) DNN (cross-entropy) 19.87

F0 features mentioned in Section 2.2 were appended to the
spectral features, resulting in a 42-dimensional feature vector
(MFCC + pitch). The MFCC and MFCC + pitch vector were
spliced in time, taking a context size of seven frames (three on
each side of the current frame), and projecting the dimension of
the concatenated vector down to 40 dimensions using linear dis-
criminate analysis (LDA). The resulting features were further
de-correlated with a maximum likelihood linear transformation
(MLLT), which is also known as the global semi-tied covariance
transform. Moreover, speaker adaptive training (SAT) was per-
formed using a single feature-space maximum likelihood linear
regression transform, estimated per speaker.

3.3. Subsystem descriptions and performance

Both GMM-HMM and DNN-HMM systems were built in this
study. We adopt 181 tonal phonemes (tonemes) consisting of
consonants and five tonal vowels, which are distinct from the
five types position boundaries, as the basic HMM units. The
GMM-HMM systems were trained on the LDA+MLLT+SAT
features described above. The HMM models were constructed
with a maximum of 8,000 tied triphone states and each state
had 16 Gaussian mixture components. We compared the results
of the models trained using ML with those using discriminative
training applied with a feature space boosted MMI (FBMMI)
followed by model space boosted MMI (BMMI) training.

The DNNs were trained on the same LDA + MLLT +
SAT features as the GMM-HMM, and the only difference with
GMM-HMM was that the features were globally normalized to
have zero mean and unit variance. The input to the network
was a 15 frame (seven frames on each side of the current frame)
context window of the 40-dim features, and projected down to
300 dimensions using LDA. The network had 300 nodes as in-
put and six layers (i.e., five hidden layers), where each hid-
den layer had 2100 neurons and 8000 nodes as output. The
DNNs were trained using cross-entropy at frame-level. Mini-
batch stochastic gradient descent (SGD) was used to minimize
the cross-entropy between the labels and network output. The
utterance frames were presented in a randomized order, and the
SGD used mini-batches of 256 frames. An exponentially de-
caying schedule was used that started with an initial learning
rate of 0.008. In this schedule, rate is halved when the improve-
ment in the frame accuracy on the cross-validation set between
two successive epochs falls below 0.01%. The stop criterion
occurs when the frame accuracy increases by less than 0.001%.
A single GPU (Tesla K20m) was used to accelerate the training
process.

The GMM-HMM and DNN-HMM systems that we built
with MFCC + pitch features serve as the baseline systems for

Table 2: Recognition results (in %WER ) for GMM-HMM and
DNN-HMM systems using acoustic modeling with proposed
tonal features. The relative error rate reduction in percent is
given in parentheses. "Individual" means individual middle or-
der IMFs, and "reconstructed" means F0 reconstructed by re-
combining a collection of the middle order IMFs.

Feature Model WER
MFCC + pitch ML SAT GMM 24.93 (3.60)

(individual) DNN (cross-entropy) 19.28 (2.97)
MFCC + pitch ML SAT GMM 24.71 (4.45)
(reconstructed) DNN (cross-entropy) 19.17 (3.52)

verifying the proposed method. Table 1 presents the recognition
results of the baseline systems with the original tonal features
and compares them with those using MFCC features only. A
comparison of the recognition results for each systems shows
that the appended original tonal features significantly improve
performance in Mandarin ASR for the task of broadcast conver-
sation speech.

3.4. Performance of the EMD-based tonal features

Based on the findings of Section 2.3, we applied the middle
order IMFs of F0 as augmented acoustic features to investi-
gate their effect on the recognition performance in both GMM-
HMM and DNN-HMM systems. In this study, either recon-
structed F0 based on the middle order IMFs or an individual
middle order IMF were used as the expanded acoustic features.

The recognition results of the two systems using acoustic
modeling with reconstructed F0 related tonal features are shown
in Table 2. Here, "individual" indicates that individual middle
order IMFs has been used as the expanded acoustic features,
and "reconstructed" means that tonal features reconstructed by
recombining a collection of the middle order IMFs were used as
the expanded acoustic features. In comparison with the results
of Table 1, both individual and reconstructed GMM-HMM and
DNN-HMM systems achieved better recognition performance
than those with the original tonal features.

4. Discussion and Conclusion
In this study, we explored the EMD method on the F0 contour of
Mandarin Chinese speech for ASR. Based on our analysis, we
proposed to reconstruct F0 related tonal features with a view to
removing the irrelevant components of tonal information by re-
combining a collection of IMFs. The reconstructed F0 contour
was constructed to capture the more prominent lexical tonal pat-
terns as complementary tonal information for acoustic modeling
in Mandarin ASR systems.

The experimental results show that the acoustic modeling
with reconstructed F0 related tonal features was able to fur-
ther improve the recognition performance for Mandarin Chi-
nese compared with that using typical tonal features. Even di-
rectly appending the decomposed tonal features as individual
components to the acoustic features improved recognition per-
formance. Although the DNN automatically helps to determine
which features are useful for learning, the potential for variance
still exists. The proposed method should further alleviate vari-
ance problems in acoustic modeling not only for Mandarin ASR
systems but also for the ASR systems of other tonal languages.
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