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Abstract
In this study, we develop a new method to realize speech in-
telligibility prediction of synthetic sounds processed by nonlin-
ear speech enhancement algorithms. A speech envelope power
spectrum model (sEPSM) was proposed to account for subjec-
tive results on a spectral subtraction, but it is untested by re-
cent state-of-the-art speech enhancement algorithms. We intro-
duce a dynamic compressive gammachirp auditory filterbank
as the front-end of the sEPSM (dcGC-sEPSM) to improve the
predictability. We perform subjective experiments on speech
intelligibility (SI) of noise-reduced sounds processed by the
spectral subtraction and a recently developed Wiener filter algo-
rithm. We compare the subjective SI scores with the objective
SI scores predicted by the proposed dcGC-sEPSM, the original
GT-sEPSM, the three-level coherence SII (CSII), and the short-
time objective intelligibility (STOI). The results show that the
proposed dcGC-sEPSM performs better than the conventional
models.
Index Terms: speech intelligibility, auditory model, objective
measure, speech enhancement

1. Introduction
The ability to obtain a reliable objective measure of speech in-
telligibility is important to developing sound transmission and
processing apparatus. The speech intelligibility index (SII) [1]
was proposed to evaluate the effect of the transmission band-
width and noise in telephone lines. The speech transmission in-
dex (STI) [2] was proposed to evaluate the effect of room acous-
tics based on temporal modulation transfer functions. However,
these indexes are not able to evaluate enhanced speech sounds
that are processed by recently developed nonlinear noise sup-
pression algorithms such as spectral subtraction and Wiener fil-
tering.

A number of extended algorithms have been proposed to
overcome the problems [3, 4, 5, 6]. Kates and Arehart [5] pro-
posed three-level coherence SII (CSII) as an extension of the SII
to accommodate the effect of nonlinear processing such as peak
clipping. Taal et al. [6] proposed a short-time objective intel-
ligibility (STOI) measure to predict the speech intelligibility of
sounds processed by speech separation algorithms such as ideal
time-frequency segregation (ITFS).

There is an alternative approach based on the knowledge of
the human auditory system. Jørgensen and Dau [7] proposed
the speech-based envelope power spectrum model (sEPSM) to
predict the intelligibility of speech sounds processed by spec-
tral subtraction. This model consists of the linear gammatone
auditory filterbank (GT-FB) [8], envelope extractors, and mod-

ulation filterbanks. Speech intelligibility is estimated from the
signal-to-noise ratio (SNR) in the modulation frequency do-
main. They demonstrated that the sEPSM was able to pre-
dict speech intelligibility consistent with the human subjective
scores as a function of an over-subtraction factor in the spectral
subtraction. However, the sEPSM has been rarely used as an ob-
jective measure, and this may be because it has not been eval-
uated by recently developed speech enhancement algorithms.
Moreover, the initial stage of the sEPSM is the classic linear
gammatone filterbank, which cannot account for the masking
effect of noise on speech, which changes dynamically in the
time-frequency domain. Therefore, it is better to introduce the
recent knowledge of auditory peripheral processing.

In this paper, we propose to extend the sEPSM with the dy-
namic compressive gammachirp filterbank (dcGC-FB) [9], in
which the level-dependent frequency selectivity and the gain of
the auditory filter were reasonably determined by the data ob-
tained from psychoacoustic masking experiments. In Section
2, we overview the original sEPSM based on the gammatone
(GT-sEPSM) to introduce the proposed model (dcGC-sEPSM).
In Section 3, we explain the evaluation based on the subjec-
tive experiments on speech intelligibility (SI) for noise-reduced
sounds by performing a simple spectral subtraction and a state-
of-the-art Wiener filter (WF). We describe the calculation of the
objective SI scores using three-level CSII and STOI as the com-
petitive algorithms. We explain the results in Section 4.

2. Extension of the sEPSM
2.1. Replacing the auditory filterbank
Figure 1 is a block diagram of the sEPSM extended with the dy-
namic compressive gammachirp filterbank dcGC-FB, “dcGC-
sEPSM.” For convenience, the original sEPSM is referred to as
“GT-sEPSM.” The software of the GT-sEPSM is provided as a
set of m-files in the Auditory Model Toolbox (AMT) [10]. In
the GT-sEPSM, the input signal is analyzed using 22 individual
GT filters that have 1/3 octave spacing between the center fre-
quencies, which cover the range from 63 Hz to 8000 Hz [7]. It
is not effective to use such a sparse set of filters in the dcGC-
FB because it is necessary to calculate the signal level with the
dense filter channels [9]. We used a default version of the dcGC-
FB that has 100 channels equally spaced on the ERBN number,
and which covers the speech range between 100 and 6000 Hz.

2.2. Calculation of the SNR in the envelope domain
We extracted the temporal envelope from the output of the indi-
vidual auditory filter using the Hilbert transform and a low-pass
filter. The cutoff frequency of the low-pass filter is 150 Hz. We
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Figure 1: Block diagram of the sEPSM extended with the
dcGC-FB (dcGC-sEPSM)

calculated the power spectrum of the temporal envelope using
the fast Fourier transform (FFT), and it is weighted by seven
modulation filters defined in the modulation frequency domain,
as described in [7]. Therefore, the total number of envelope
power spectra, Penv , is the product of the number of auditory
filter channels and the modulation filter channel.

Then, we calculated the modulation power spectra of a
noisy speech sound, Penv,S+N , and noise, Penv,N , to derive
the SNR in the modulation frequency domain, SNRenv. In the
original GT-sEPSM[7], SNRenv is calculated as

SNRenv =

√√√√ J∑
j=1

I∑
i=1

(Penv,S+N,i,j − Penv,N,i,j

Penv,N,i,j

)2
, (1)

where the audio filter channel is i{i|1 ≤ i ≤ I}, and the
modulation filter channel is j{j|1 ≤ j ≤ J}. This is because
Jørgensen and Dau [7] assumed that the individual audio filters
and the modulation filters are completely independent.

However, this is not the case for the dcGC-sEPSM because
the 100-ch dcGC auditory filters are highly overlapped with
each other. The individual SNRenv,j for the modulation fil-
ter channel, j, is defined as the ratio of the powers summarized
across the audio filter channel, i, and is given as

SNRenv,j =

∑I
i=1(Penv,S+N,i,j − Penv,N,i,j)∑I

i=1 Penv,N,i,j

. (2)

The total SNRenv is calculated as

SNRenv =

√√√√ J∑
j=1

(
SNRenv,j

)2
. (3)

2.3. Transformation from SNRenv to percent correct
SNRenv is converted into the sensitivity index d′ of an “ideal
observer” by

d′ = k · (SNRenv)
q, (4)

where k and q are empirically determined constants. Jørgensen
and Dau [7] claimed that these values are unaffected by the
speech material and experimental conditions. However, it is
the case that they are largely dependent on the SNRenv cal-
culation, as in Eq. 3. More practically, they can be tuned

so that the predicted speech intelligibility scores for reference
sounds roughly coincide with those of human subjective scores
(see section 3.3.1). The speech intelligibility as percent cor-
rect, Pcorrect, is predicted from this index d′ using a multiple-
alternative forced choice (mAFC) model [11] in combination
with an unequal-variance Gaussian model [12], and is given as

P
(d′)
correct = Φ

(
d′ − µN√
σ2
S + σ2

N

)
, (5)

where Φ denotes the cumulative normal distribution. The values
of µN and σS are determined by the response-set size, m, which
is described in section 3.3.1. The value of σS is a parameter
that is related to the redundancy of the speech material (e.g.,
meaning sentences or mono-syllables).

3. Evaluation of the model
We used two speech-enhancement algorithms: (1) a simple
spectral subtraction algorithm [13] for consistency with the
methods in [7]; (2) a state-of-the-art noise-suppression algo-
rithm based on WFs [14]. We performed subjective experiments
and objective predictions for noise-reduced sounds processed
by these algorithms. We compared the proposed dcGC-sEPSM
with competitive models, GT-sEPSM, CSII, and STOI.

3.1. Speech enhancement algorithms
3.1.1. Spectral subtraction
We estimated the amplitude spectrum of the clean speech, Ŝ(f),
by performing spectral subtraction (SS) defined as

Ŝ(f) =
[
PS+N (f)− αP̂N (f)

]1/2
, (6)

where P̂N (f) represents the estimated power spectrum of noise
(N ), PS+N (f) is the power spectrum of the noisy speech (S +
N ), and α denotes an over-subtraction factor. We calculated
the power and phase spectra using the STFT with a 2048-point
Hanning window and 50% frame shift at a sampling frequency
of 16 kHz.

3.1.2. Wiener filter with pre-trained speech model
Fujimoto et al. [14] developed a new speech enhancement al-
gorithm based on a WF, for which the filter parameters were
estimated using a pre-trained speech model (PSM). Thus, this
is referred to as WFPSM below. The PSM is defined as a Gaus-
sian mixture model that is defined in the Mel-spectrum domain
using the vector Taylor series based model combination algo-
rithms [15]. This algorithm can reliably distinguish speech from
noise in the noisy speech when the PSM is sufficiently trained
by clean speech sounds. In this evaluation, we used the 24-
channel Mel-filterbank and set the number of Gaussian mixture
components for speech and noise at 64 and 1, respectively. Be-
cause the filter gain is estimated in the Mel-frequency domain,
we transformed it into the WF gain in the linear frequency do-
main to apply the noisy speech. We also performed the calcula-
tions at a sampling frequency of 16 kHz.

3.2. Subjective experiments
We performed speech intelligibility experiments of speech
sounds of Japanese four-mora words in a database (FW07)
[16, 17]. Speech sounds of males (mis) were obtained from the
set of the lowest familiarity, which prevents the listeners from
complementing the answer by their guess. We prepared nine
noisy-speech sets as follows so that every subject listened to a
different set to balance the word difficulty.

Noisy speech sounds were generated by mixing the clean
speech sounds and pink noise at SNRs of -6, -3, 0, and 3 dB.
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The noisy sounds are referred to as “unprocessed” sounds as
follows. We generated enhanced speech sounds using the SS
in section 3.1.1 and the WFPSM in section 3.1.2. The over-
subtraction factor α for the SS was fixed to 1.0 as a reference
condition for comparing the results in [7]. This method is re-
ferred to as “SS(1.0)” below. The degree of noise residue in
WFPSM was controlled by the parameter ε{ε|0 ≤ ε ≤ 1},
where the noise increases as the value increases. We used
WFPSM with ε values of 0, 0.1, and 0.2, which are referred
to as “WF

(0.0)
PSM,” “WF

(0.1)
PSM,” and “WF

(0.2)
PSM,” respectively. In

the preliminary listening tests, WF
(0.1)
PSM and WF

(0.2)
PSM provided

moderate noise reduction, while WF
(0.0)
PSM produced distortion

in speech sounds that resulted from the high degree of noise
reduction.

The sounds were presented diotically via a DA converter
(Fostex, HP-A8) over headphones (Sennheiser, HD-580) at a
sampling frequency of 48 kHz and 24 bit after up-sampling
from 16 kHz. The stimulus sound level was 65 dB in LAeq. We
carried out the experiment in a sound-attenuated room with a
background level of about 26 dB in LAeq.

Nine (four male and five female) normal-hearing listeners
with ages between 20 and 23 years old participated in the ex-
periments after giving informed consent. Their native language
was Japanese. The listeners were instructed to write down the
words that they heard using “hiragana,” which roughly corre-
sponds to Japanese morae or CV syllables. The total number
of presented stimuli was 400 words, which are a combination
of five signal processing conditions (“Unprocessed,” “SS(1.0),”
“WF

(0.0)
PSM,” “WF

(0.1)
PSM,” and “WF

(0.2)
PSM,”), four SNR conditions

(−6, −3, 0, and 3 dB SNR), and twenty words for each condi-
tion. Note that the words for each condition correspond to a set
of twenty words in FW07. The assignment of the word set to
the conditions was randomized across listeners to avoid the bias
due to the variability of the word difficulty. The percentage of
correct words was used for comparison.

3.3. Speech intelligibility models
We calculated the speech intelligibility from the same stimulus
sounds used in the subjective experiments. The models were
the dcGC-sEPSM, GT-sEPSM, three-level coherence SII (CSII)
[5], and short-time objective intelligibility measure (STOI) [6].
The values of undetermined parameters in these models were
simply derived to minimize the mean-squared error (MSE) be-
tween speech-intelligibility scores of the model predictions and
the subjective results for the unprocessed sounds. We used the
simplex method for optimization [18].

3.3.1. GT-sEPSM and dcGC-sEPSM
For the prediction, we are required to determine four constants,
k, q, σS , and m, in Eqs. 4 and 5. We fixed q = 0.5 as in
[7] and m = 20000, as described below. We derived the other
parameters, k and σS , by performing the optimization. The
results obtained were k = 0.83 and σS = 2.74 for the dcGC-
sEPSM, and k = 0.40 and σS = 2.85 for the GT-sEPSM. The
constants for the GT-sEPSM improved the fitting better than the
original values (i.e., k =

√
1.2 and σS = 0.6 or 0.9) in [7].

The parameters m in Eq. 5 relate to the redundancy and the
response set size of the speech material [7]. In this model evalu-
ation, we used a dataset of Japanese four-mora words. We esti-
mated the response set size, m, as 20000. The size of the mental
lexicon for four-mora syllables was roughly 22500, as estimated
from the database [19]. Then, the listeners may guess the an-
swer based on the mental lexicon of two-mora words (3600)
or one-mora syllables (102) when they missed parts of word

sounds. The estimated value was a result of a compromise be-
tween these numbers.

3.3.2. Three-level coherence SII (CSII)
The three-level coherence SII (CSII) [5] uses the “magnitude-
squared coherence” (MSC) function, which is the cross-spectral
density of noisy and clean signals. The SNR used in the stan-
dard SII is replaced by the signal-to-distortion ratio (SDR) in
the CSII. The SDR is derived as the MSC of the FFT spec-
trum weighted by the 16-channel roex filter [20]. The MSC is
computed by segmenting the sentences using 30-ms duration
Hanning windows with a 75% overlap between adjacent frames
to reduce bias and variance in the estimate of the MSC [21].
We performed separate calculations to determine the values of
the CSII for three different sound power levels in the short seg-
ments. Then, we combined the three CSII values (CSIIlow,
CSIImid, and CSIIhigh) with weights to predict the speech in-
telligibility. The prediction formula in the current evaluation
was derived after the parameter optimization, and was given as

P
(CSII)
correct =

100

1 + e(2.63+9.40CSIIlow−11.33CSIImid+0.01CSIIhigh)
.

(7)
3.3.3. Short-time objective intelligibility measure (STOI)
The short-time objective intelligibility measure (STOI) [6] uses
the correlations between the envelopes of clean and enhanced
signals across all 1/3-octave bands. We calculated the correla-
tion values in the 384-ms frame, and averaged them between all
segments and channels to obtain the STOI. The STOI is trans-
formed into speech intelligibility by the logistic function with
the optimized parameters. In the current evaluation, it was given
as

P
(STOI)
correct =

100

1 + e(−7.42STOI+5.35)
. (8)

4. Results
4.1. Speech intelligibility curve
Figure 2 shows the average percentage of correct values as a
function of the speech SNR from (a) the subjective experiment,
(b) the model predictions using the proposed dcGC-sEPSM, (c)
the original sEPSM (GT-sEPSM), (d) the three-level CSII, and
(e) the STOI. There are four conditions for the speech enhance-
ment algorithms (SS(1.0), WF

(0.0)
PSM, WF

(0.1)
PSM, and WF

(0.2)
PSM),

and the “Unprocessed” condition for the reference. The per-
centage of correct values is the average across the nine noisy
speech sets that were used for both the subjective experiments
with the nine listeners and the objective predictions. To ob-
tain the speech intelligibility (SI) curve, we used the bootstrap
method [22, 23] to fit a cumulative Gaussian psychometric func-
tion to the four percent-correct values.

In the human subjective results in Fig. 2(a), the SI curve for
WF

(0.2)
PSM is higher than the curve for the unprocessed condition.

In contrast, the curves for WF
(0.1)
PSM and SS(1.0) are lower. The

curve for WF
(0.0)
PSM crosses the curve of the unprocessed con-

dition. The results imply that the speech intelligibility in the
subjective experiments is slightly improved by using WF

(0.2)
PSM.

We compared the prediction models with this result as follows.
The SI curves predicted by the dcGC-sEPSM in Fig. 2(b)

are roughly located in the same range as the human subjective
results in Fig. 2(a). The SI curves for all speech enhancement
algorithms are roughly parallel, and the order is : WF

(0.2)
PSM >

WF
(0.1)
PSM > SS(1.0) ≃ WF

(0.0)
PSM. The curve for the unprocessed

condition is higher than the other curves when SNR ≥ 0 dB,
and when it is lower than the curves of WF

(0.2)
PSM and WF

(0.1)
PSM.
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Figure 2: The results of subjective experiments (a) and objective predictions (b)-(e). Comparison in the SRTs (f).

However, the orders of the three curves of WFPSM are the same
as the curves in the subjective results. The main difference is
that the curve of WF

(0.0)
PSM is roughly the same as the curve of

SS(1.0).
The SI curves predicted by the GT-sEPSM in Fig. 2(c) are

different from the curves in the subjective results. The order of
the curves is: Unprocessed ≫ SS(1.0) > WF

(0.2)
PSM > WF

(0.1)
PSM

> WF
(0.0)
PSM. Because the order of the curves between SS(1.0)

and three WFPSM is opposite, the GT-sEPSM cannot account
for the subjective results. It was not possible to compensate the
order simply by adjusting the model parameters.

The SI curves predicted by the three-level CSII in Fig. 2(d)
are positioned more diversely than the SI curves in the subjec-
tive results. The order is: WF

(0.0)
PSM > Unprocessed ≫WF

(0.1)
PSM

≃ WF
(0.2)
PSM ≫ SS(1.0). The three-level CSII could not account

for the subjective results because the order of the three WFPSM

curves is opposite.
The SI curves predicted by the STOI in Fig. 2(e) are roughly

parallel, and the order is : WF
(0.1)
PSM ≃ WF

(0.0)
PSM ≃ WF

(0.2)
PSM >

Unprocessed > SS(1.0). Because there is no difference between
the three WFPSM curves, the STOI cannot account for the sub-
jective results.

4.2. Speech reception threshold
To perform a detailed analysis of the results, we calculated the
speech reception threshold (SRT). The SRT is defined as the
SNR value associated with a 50% correctness. The speech in-
telligibility is generally high when the SRT value is small.

Figure 2(f) shows the SRT values in dB for human sub-
jective results and model predictions obtained by the dcGC-
sEPSM and STOI. The filled bar and error bar represent the
average and standard deviation, respectively, across the nine
noisy-speech sets (which corresponds to the nine listeners de-

scribed in section 3.2). The SRT values for the GT-sEPSM
(Fig. 2(c)) and the three-level CSII (Fig. 2(d)) are not presented
here because some of the values are much greater than the SRT
value of 6 dB. The SRT values for the dcGC-sEPSM (Fig. 2(b))
are generally consistent with the SRT values in the human sub-
jective results, with the exception of the condition of WF

(0.0)
PSM.

In contrast, the SRT values in the STOI (Fig. 2(e)) for the
three variations of WFPSM are almost identical, and are much
smaller than the subjective results. In the current evaluation, we
confirmed that the STOI is not a good measure.

The reason for the flipped SRT for WF
(0.0)
PSM in the dcGC-

sEPSM may be due to the ambiguous definition of noise in [7],
which was employed to calculate SNRenv using Eq. 2. The
noise sounds obtained by WF

(0.0)
PSM were somewhat speech-like,

which may have resulted in the low value of SNRenv. There-
fore, in our future study, we need to consider the definition of
noise.

5. Conclusions
In this study, we extended the speech-based envelope power
spectrum model (sEPSM) using the dynamic compressive gam-
machirp auditory filterbank (dcGC-FB) which accounts for the
masking characteristics in the auditory peripheral processing.
We performed subjective experiments and predictions of the
speech intelligibility of speech sounds enhanced by the state-of-
the-art Wiener filtering method with a pre-trained speech model
and a simple spectral subtraction. The results show that the pro-
posed dcGC-sEPSM predicts the human subjective results bet-
ter than the original sEPSM, the three-level CSII, and the STOI,
which are frequently used as objective measures.

6. Acknowledgements 
This research was partially supported by JSPS KAKENHI 
Grant Numbers JP25280063 and JP16H01734. 

2888



[1] ANSI, “Methods for calculation of the speech intelligibility in-
dex,” ANSI S3.5, American National Standard Institute, 1997.

[2] H. J. M. Steeneken and T. Houtgast, “A physical method for mea-
suring speech-transmission quality,” J. Acoust. Soc. Am., vol. 67,
no. 1, pp. 318–326, 1980.

[3] K. S. Rhebergen and N. J. Versfeld, “A Speech Intelligibility
Index-based approach to predict the speech reception threshold
for sentences in fluctuating noise for normal-hearing listeners,” J.
Acoust. Soc. Am., vol. 117, no. 4, pp. 2181–2192, 2005.

[4] R. L. Goldsworthy and J. E. Greenberg, “Analysis of speech-based
Speech Transmission Index methods with implications for nonlin-
ear operations.” J. Acoust. Soc. Am., vol. 116, no. 6, pp. 3679–
3689, 2004.

[5] J. M. Kates and K. H. Arehart, “Coherence and the speech in-
telligibility index,” J. Acoust. Soc. Am., vol. 117, no. 4 Pt 1, pp.
2224–2237, 2005.

[6] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An al-
gorithm for intelligibility prediction of time-frequency weighted
noisy speech,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[7] S. Jørgensen and T. Dau, “Predicting speech intelligibility based
on the signal-to-noise envelope power ratio after modulation-
frequency selective processing,” J. Acoust. Soc. Am., vol. 130,
no. 3, pp. 1475–1487, 2011.

[8] R. D. Patterson, M. H. Allerhand, and C. Giguère, “Time-domain
modeling of peripheral auditory processing: A modular architec-
ture and a software platform,” J. Acoust. Soc. Am., vol. 98, no. 4,
pp. 1890–1894, 1995.

[9] T. Irino and R. D. Patterson, “A Dynamic Compressive Gam-
machirp Auditory Filterbank,” IEEE Trans. Audio. Speech. Lang.
Processing, vol. 14, no. 6, pp. 2222–2232, 2006.

[10] P. Søndergaard and P. Majdak, “The Auditory Modeling Toolbox,”
in Technol. Binaural List., J. Blauert, Ed. Berlin, Heidelberg:
Springer, 2013, pp. 33–56.

[11] D. M. Green and T. G. Birdsall, “The effect of vocabulary size,”
in Signal Detection and Recognition by Human Observers. New
York: Wiley, 1964, pp. 609–619.

[12] L. Mickes, J. T. Wixted, and P. E. Wais, “A direct test of the
unequal-variance signal detection model of recognition memory,”
Psychon. Bull. Rev., vol. 14, no. 5, pp. 858–65, 2007.

[13] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of
speech corrupted by acoustic noise,” in ICASSP ’79. IEEE Int.
Conf. Acoust. Speech, Signal Process., vol. 4. Institute of Elec-
trical and Electronics Engineers, 1979, pp. 208–211.

[14] M. Fujimoto, S. Watanabe, and T. Nakatani, “Noise suppres-
sion with unsupervised joint speaker adaptation and noise mixture
model estimation,” in 2012 IEEE Int. Conf. Acoust. Speech Signal
Process. IEEE, 2012, pp. 4713–4716.

[15] P. J. Moreno, B. Raj, and R. M. Stern, “A vector Taylor se-
ries approach for environment-independent speech recognition,”
in Acoust. Speech, Signal Process. 1996. ICASSP-96. Conf. Pro-
ceedings., 1996 IEEE Int. Conf., vol. 2. IEEE, 1996, pp. 733–
736.

[16] S. Sakamoto, N. Iwaoka, Y. Suzuki, S. Amano, and T. Kondo,
“Complementary relationship between familiarity and SNR in
word intelligibility test,” Acoust. Sci. Technol., vol. 25, no. 4, pp.
290–292, 2004.

[17] S. Amano, T. Kondo, Y. Suzuki, and S. Sakamoto, “Familiarity-
controlled word lists 2007 (FW07),” The Speech Resources Con-
sortium, National Institute of Informatics, 2007.

[18] J. A. Nelder and R. Mead, “A Simplex Method for Function Min-
imization,” The Computer Journal, vol. 7, no. 4, pp. 308–313,
1965.

[19] S. Amano and T. Kondo, “Estimation of mental lexicon size with
word familiarity database,” in Int. Conf. Spok. Lang. Process.,
1998, pp. 2119–2122.

[20] B. C. J. Moore, “Suggested formulae for calculating auditory-
filter bandwidths and excitation patterns,” J. Acoust. Soc. Am.,
vol. 74, no. 3, pp. 750–753, 1983.

[21] P. C. Loizou, Speech Enhancement: Theory and Practice, Second
Edition, 2nd ed. CRC Press, 2013.

[22] F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fit-
ting, sampling, and goodness of fit,” Perception & psychophysics,
vol. 63, no. 8, pp. 1293–1313, 2001.

[23] ——, “The psychometric function: II. Bootstrap-based con-
fidence intervals and sampling,” Perception & psychophysics,
vol. 63, no. 8, pp. 1314–1329, 2001.

7. References 

2889


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Keisuke Kinoshita
	Also by Tomohiro Nakatani
	----------

