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Abstract

Rescoring hypothesized detections, using keyword’s audio sam-
ples extracted from training data, is an effective way to improve
the performance of a Keyword Search (KWS) system. Unfor-
tunately such rescoring framework cannot be applied directly
to Out-of-Vocabulary (OOV) keywords since there is no sam-
ple in the training data. To address this limitation, we propose
two techniques for OOV keywords in this work. The first tech-
nique generates samples for an OOV keyword by concatenat-
ing samples of its constituent subwords. The second technique
splits hypothesized detections into segments, then estimates the
acoustic similarities between detections and subword’s samples
according to the similarities between segments and these sam-
ples. The similarity scores from these two techniques are used
to rescore and re-rank the list of detections returned by the au-
tomatic speech recognition (ASR) systems. The experiments
show that incorporating the proposed similarity scores results
in a better separation between the correct and false alarm de-
tections than using the ASR scores alone. Furthermore, experi-
mental results on the NIST OpenKWS15 Evaluation show that
rescoring with the proposed similarity scores significantly out-
performs the raw ASR scores, and other methods that do not use
the similarity scores, in both Maximum Term Weighted Value
(MTWV) and Mean Average Precision (MAP) metrics.
Index Terms: Spoken term detection, OOV keywords, graph
based rescoring, acoustic similarity, template concatenation.

1. Introduction
With the prevalence of smart phone devices and high Internet
bandwidth, there is an increasing amount of spoken data to be
archived, managed, and analyzed. Speech retrieval is thus an
important research area.

This work focuses on the Spoken Term Detection (STD) [1]
or Keyword Search (KWS) [2] task, which detects the present
of a textual keyword in an audio corpus. Generally, a two-stage
approach is utilized for a KWS system [3–6]. Specifically, au-
dio files of the corpus are first segmented and transcribed into
lattices by an automatic speech recognition (ASR). Then index-
ing/retrieval techniques such as weighted finite state transducer
(WFST) [7–9] or ngram inverted index [10–13], are applied on
these lattices to generate list of hypothesized detections.

It is observed that the original detection scores, which are
normally the posterior probabilities [14] of keywords at de-
tected locations, might not be robustly estimated in adverse con-
ditions. Thus, various approaches has been proposed to rescore
the KWS detections [15–23, 33].

In our previous work [24], keyword samples extracted from
training data are helpful in rescoring the list of detections. The
main idea is that if a hypothesized detection is acoustically more
similar to the keyword samples in the training data, it is more
likely to be a true detection, and its score should be boosted.
The acoustic similarity can be estimated using Dynamic Time
Warping (DTW) which is a template-based and non-parametric
approach; hence is complementary with the standard model-
based parametric ASR system. One of the major drawbacks of
the rescoring framework is that it cannot be applicable for Out-
of-Vocabulary (OOV) keywords, which contain words that do
not appear in the ASR dictionary (and do not have any training
samples).

We observed that although an entire OOV keyword cannot
be found in the training data, its constituent units, i.e. individual
words or subwords, can apprear in the training data. Therefore,
in this work, we proposed two techniques to address the lack-
of-samples problem for OOV keywords using samples of their
subwords. The first technique generates entire samples for an
OOV keyword by concatenating samples of its subwords. The
second technique splits hypothesized detections into segments
then estimates the acoustic similarities between detections and
these subword’s samples based on the similarities at the sub-
word level. We will show that when interpolating with ASR
scores, the acoustic similarities estimated by the proposed tech-
niques result in a better separation between correct detections
and false alarm ones. We also show that rescoring KWS de-
tections, using the proposed similarity scores, significantly out-
performs the raw ASR score as well as other rescoring methods
that do not use the similarity scores.

The paper is organized as follows. Section 2 describes the
proposed rescoring framework. Section 3 presents the experi-
mental setup for the KWS task. In section 4, we show the ex-
perimental results and discussions. Finally, section 5 concludes
our work.

2. Rescoring framework for OOV keywords
The proposed rescoring framework for an OOV keyword is
shown in Figure 1. When presented with an OOV keyword q,
the subword-based 1 KWS system first searches over the lattices
(generated by an ASR system) to generate a list of detections
with scores and timing information. The rescoring system then
converts the OOV keyword into a subword representation and
extracts a list of samples for each subword, which is described

1In this work, we use morpheme as the subword unit, which is de-
scribed in section 3.3
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in section 2.1. Next, the acoustic similarities between hypoth-
esized detections and subword samples are estimated through
two proposed techniques as described in section 2.2. Finally,
these similarities scores are used to rescore the list of detections
using methods described in section 2.3 .

2.1. Subword samples extraction for an OOV keyword

Suppose keyword q consists of n(q) words, i.e.
q =W1W2...Wn(q). For each word Wi, if it does not
appear in the training data, split it into subword representa-
tions, otherwise keep Wi unchanged. Keeping words that
appear in the training data helps to reduce the number of
concatenation/splitting, as will be mentioned in section 2.2.
The conversion process results in a new representation of
keyword q, i.e. q = U1U2...Un where Ui are either words or
subwords. For simplicity, in the rest of the paper we treat all
Ui as subwords. Then, given the time boundaries of subwords
in the training transcription, we extract all samples of each
subword Ui from the training data.

2.2. Acoustic similarity estimation

Given samples for each subword Ui of the keyword q, we then
estimate the acoustic similarities between hypothesized detec-
tions and these samples using two techniques described in fol-
lowing subsections.

2.2.1. Concatenating subword samples

This technique generates samples of q by concatenating samples
of each subword Ui, then estimates the acoustic similarities be-
tween the detections and keyword samples at the keyword level.
For each consecutive concatenation between samples hi,j and
hi+1,k , where hi,j is the jth sample of Ui and hi+1,k is the
kth sample of Ui+1, we assign a concatenation penalty Pi,i+1

that reflects the acoustic mismatch between the two samples.
Specifically, a mismatch occurrs at one of the following situa-
tions:

• They come from different audio files.

• The speaker’s genders of two samples are different

• Two samples are spoken by different speakers.

• The right context of hi+1,k is not the same as the first
phoneme of hi,j or the left context of hi,j is not the same
as the last phoneme of hi+1,k. Here, the the left context
(or right context) of a subword refers to the phoneme
right before (or right after) of the subword.

Then the concatenation penalty between hi,j and hi+1,k is com-
puted as Pi,i+1 = 1.1g 2,where g is the number of mismatches
between the two samples (e.g. different speaker, audio file or
contexts as mentioned above).The total penalty for the whole
concatenation is P =

∏n−1
i=1 Pi,i+1.

Suppose each subword Ui has NUi samples, the number of
concatenated instances will be NU1 × NU2 × ...NUn , which
is often large. In this work we only select top 20 concatenated
instances with lowest penalties as the samples for q. We now
can easily estimate the acoustic similarity between each detec-
tion d and a concatenated sample xi, denoted as S(d, xi), using
Dynamic Time Warping (DTW) [25]. The average similarity

2The factor 1.1 reflects the degree of concatenation penalty. Other
values greater than 1 are also appropriate

between d and all concatenated samples is then estimated as

S(d) =
1

20

20∑
i=1

S(d, xi) (1)

2.2.2. Splitting hypothesized detections

This technique estimates the acoustic similarities between de-
tections and subword’s samples according to the similarities at
the subword level. The procedure to estimate such similarity is
described as follows:

Step 1: Split each detection d into segments, i.e.
d = d1d2...dn so that each segment di corresponds to a sub-
word Ui.

Step 2: Estimate the similarity between each di and all
samples of the subword Ui as

S(di, Ui) =
1

NUi

NUi∑
j=1

S(di, hi,j) (2)

where hi,j denotes jth sample of Ui, and S(di, hi,j) denotes
the acoustic similarity between two speech segments di and
hi,j .

Step 3: The acoustic similarity between d and all subword
samples is estimated by averaging S(di, samples(Ui)) through
di, i.e.

S(d) =
1

n

n∑
i=1

S(di, Ui) (3)

This technique does not need to deal with the mismatch cost
as in the samples concatenation method in section 2.2.1. It,
on the other hand, requires the time boundary information of
all subwords for each detection, estimated by the KWS system,
which might not be always precise.

2.3. Rescoring OOV detections using keyword samples

2.3.1. Rescoring OOV detections by simple interpolation

For each detection d, given the acoustic similarity S(d) as in
equation (1) or (3), we estimate a new confidence score for d by
interpolating S(d) with the original ASR score (i.e. its lattice
posterior probability [14]):

C′(d) = C(d)δS(d)1−δ (4)

where C(d) is the ASR score of d, δ is a interpolation factor
tuned on the development data.

This method is similar to the Pseudo Relevance Feedback
(PRF) [26]. Note that, the PRF assumes that top detections (e.g.
top 5) are relevant to the keyword q, which might not be true;
then uses acoustic similarities between d and the top detections
to perform rescoring. This method, however, uses the acous-
tic similarities between d and actual true keyword samples to
perform rescoring.

2.3.2. Rescoring OOV detections through graph random walk

This section explores the use of a graph-based algorithm, which
was previously used for the re-ranking task [20–23]. Our work
is different from the previous works in that the keyword samples
are incorporated into the graph.

For a keyword q, a directed graph is constructed from all de-
tections and all samples of the keyword. Each node of the graph
represents a detection or a keyword sample and the weight be-
tween a pair of nodes is the acoustic similarity between the two
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Figure 1: Proposed rescoring framework for an OOV keyword

nodes. For the technique in section 2.2.2, since we don’t have
any sample for the entire keyword q, a “representative sample”
is created to represent all subword’s samples of the keyword q.
The weight between the representative sample node and a de-
tection node is estimated as equation (3).

Once the graph is constructed, graph-based scores can be
estimated by algorithms such as random walk [20, 21]. Specif-
ically, let C(d) be the initial score of a node for detection d, a
graph-based score G(d) is computed as

G(d) =(1− α− γ)C(d) + α
∑

d′∈D(d)
G(d′)S′(d, d′)

+ γ
∑

x∈E(d)
G(x)S′(d, x)

(5)

where D(d) is the set of detections that connect to d, E(d)
is the set of training samples that connect to d, 0 ≤α, γ ≤ 1
are scaling factors. S′(d, d′) and S′(d, x) are the normalized
similarities computed as in [24]. The set of graph scores G(d)
can be easily estimated using an iterative method as in [20]. The
final confidence score for each detection d is then estimated as

C′(d) = C(d)δG(d)1−δ (6)

3. Experiment setup
3.1. Evaluation metric

To evaluate the KWS performance, we use the term-weighted
value (TWV) which is the primary metric defined by NIST [1]
as following:

TWV (θ) = 1− 1

M

M∑
k=1

((Pmiss(qk, θ) + βPfa(qk, θ)) (7)

where θ is a threshold, M is the number of keywords, qk is
a keyword, Pmiss and Pfa are probabilities of miss and false
alarm (FA) respectively. The weight β is related with the prior
probability of a keyword, and the cost ratio between the false
alarm and the miss errors.

The TWV value at a specific threshold θ is called Actual
term-weighted value (ATWV) while the best TWV over all pos-
sible θ is named as maximum term-weighted value (MTWV). In
this work, we report the KWS performance on MTWV since it
is less sensitive to threshold selection than the ATWV metric.

It is expected that after rescoring, correct detections should
rank higher than the false alarm ones. Thus to measure the ef-
ficiency of rescoring methods with respect to ranking perfor-
mance, Mean Average Precision at top 100 (MAP@100) is also

used as the evaluation metric in this work. It is worth noting
that MTWV and MAP are not always correlated to each other.
Moreover, MAP only characterizes the relative order, i.e. the
rank, of the detections but not the absolute detection scores as
in MTWV metric.

3.2. NIST OpenKWS15 Data

The KWS experiments are conducted on Swahili, which is the
surprise languague for the NIST OpenKWS15 Evaluation. The
released acoustic data includes 40 hours of training data, 10
hours development data and 15 hours of part 1 of evaluation
data (denoted as evalpart1). The training data is used to de-
velop the ASR systems. The dev10h data is used for parame-
ter tuning of KWS, and we evaluate the KWS performance on
evalpart1. The DTW-based acoustic similarities are estimated
using the multilingual bottleneck features trained on various
corpora [28], e.g. Cantonese, Turkish. Our initial experiments
have shown that these features are better than other well-known
features such as MFCC or PLP.

The training transcription is converted to subword repre-
sentation, as will be mentioned in section 3.3, to build the sub-
word KWS system. As the pronunciation dictionary was not
provided during the OpenKWS15 Evaluation, in this work we
use the grapheme-based dictionary, i.e. letters are considered as
phonemes.

NIST released the evaluation keyword list which contains
4454 keywords. However only 73 OOV keywords appear in the
evaluation data. To verify our proposed approach more thor-
oughly, we manually add 942 OOV keywords to the evaluation
keyword list. This results in a final keyword list with 1015 OOV
keywords. When estimating MTWV, we only consider detected
keywords, i.e. 798 keywords, since the MTWV of undetected
keywords are always 0. Similary, when estimating MAP scores,
we only consider keywords (535 keywords) that have at least
one correct detection.

3.3. Keyword Search system

We built a morpheme-based KWS system since morpheme was
shown to be effective for detecting OOV keywords [5, 27, 28].
We adopted the Morfessor toolkit [29] to segment both word-
based dictionary and word transcriptions into morpheme units.
As we used the grapheme-based dictionary, it is straightfor-
ward to infer the subword pronunciation dictionary. The open-
source Kaldi toolkit [30] is used to build the morpheme-based
ASR system. We used filter-bank features to train a deep neu-
ral network (DNN) acoustic model. The ASR system used tri-
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Figure 2: The ρ values of the interpolation (equation (4)) be-
tween the acoustic similarites in section 2.2 and raw ASR scores

gram language model. For indexing and search, we utilized the
WFST algorithm [8] which is a part of the Kaldi recipe [30].

4. Experiment results and discussion
In this section, we first demonstrate that the proposed acoustic
similarities estimated in section 2.2 are effective for rescoring
KWS detections. Specifically, we show that when interpolat-
ing with raw ASR scores, these acoustic similarities help to
effectively separate correct detections out of false alarm ones.
Then, in the next subsection, the KWS performance (MTWV
and MAP@100 scores) are reported on the evalpart1 data set.

4.1. Effect Size of MannWhitney U test

In this subsection, by adopting the idea of measuring the separa-
tion between two populations using Mann-Whitney U test [32],
we show that the proposed acoustic similarities in section 2.2
are effective for rescoring KWS detections. Specifically, we
show that when interpolating with raw ASR scores, the acous-
tic similarities result in a better separation between two popula-
tions, i.e. correct detections and false alarm detections.

LetDcorr andDfa be two set of scores of correct and false
alarm detections respectively; and D = Dcorr ∪ Dfa. We
define a non-parametric score ρ [31] as measument of the over-
lapping between two populations, i.e. Dcorr and Dfa. ρ is
estimated as follows :

Rcorr =
∑

d∈Dcorr

rank(d) (8)

Ucorr = Rcorr −
‖ Dcorr ‖ (‖ Dcorr ‖ +1)

2
(9)

ρ =| Ucorr
‖ Dcorr ‖ × ‖ Dfa ‖

− 0.5 | ×2 (10)

where rank(d) is the rank of d in D, and ‖.‖ is the cardinal of
the set. ρ is between 0 and 1; and higher ρ indicates a better
separation of Dcorr and Dfa.

Figure 2 shows the ρ values when interpolating the acoustic
similarities with the raw ASR scores as in equation (4) at differ-
ent interpolation factor δ. It can be seen that the interpolation
can improve ρ values significantly, e.g. from 0.8548 to 0.8879
(at δ = 0.4). In other words, the acoustic similarities are poten-
tial for rescoring KWS detections. Another observation is that
the similarity scores generated by the two techniques in section
2.2 provide similar performance.

Table 1: The MTWV and MAP@100 values of two rescoring
methods, i.e. simple interpolation and GBRWS, as compared to
baselines on evalpart1 data set

Methods MTWV MAP@100
Raw ASR (baseline) 0.4482 0.5670

PRF (baseline) 0.4581 0.5774

Simple interpolation Concatenating samples 0.4789 0.6304
Splitting detections 0.4799 0.6243

GBR (baseline) 0.4752 0.5834

GBRWS Concatenating samples 0.4827 0.6274
Splitting detections 0.4792 0.6208

4.2. KWS performance

This section reports the KWS performance of rescoring meth-
ods described in section 2.3. When simple interpolation is used,
the PRF is selected as the baseline. When graph random walk is
used, we compare the graph-based rescoring with sample (de-
noted as GBRWS) with the graph-based rescoring without sam-
ples (denoted as GBR) [20, 21]. The performance of raw ASR
score is also reported as another baseline for comparison.

The KWS results, i.e. MTWV and MAP@100, are pre-
sented in Table 1. It can be seen that both techniques in sec-
tion 2.2 provide similar performance. This is consistent with
the observation in section 4.1. Another point is that rescoring
methods using the proposed acoustic similarities significantly
outperform all baselines. When using the acoustic similari-
ties estimated in section 2.2.1, the simple interpolation method
provides 2.1% MTWV and 5.3% MAP@100 absolute improve-
ment over the baseline PRF. The proposed GBRWS also outper-
forms the baseline GBR on both MTWV and MAP@100 met-
rics: although the improvement on MTWV is marginal, the per-
formance improvement on MAP@100 is significant, i.e. 4.4%
absolute, when using the similarities estimated in section 2.2.1.
This can be explained that in many keywords, the rescoring pro-
cess changes the orders (i.e. changes the MAP@100) in the de-
tection list but does not change the YES/NO decisions of the
detections (i.e. MTWV remained the same).

5. Conclusion
We proposed two techniques to estimate the acoustic similar-
ities between detections and subword’s samples of OOV key-
words, so that rescoring methods can be applicable for such
keywords. The first technique concatenates samples of their
constituent subwords to form samples of the entire keywords.
The second technique splits hypothesized detections into seg-
ments, then estimates the similarities between the detections
and subword samples using similarities between each segments
and these samples. We showed that the proposed similarity
scores are helpful for rescoring the list of detections. Specifi-
cally, when interpolating with ASR scores, the similarities help
to separate effeciently correct detections out of false alarm de-
tections. Experimental results also show that rescoring methods
using the similarity scores outperform significantly other meth-
ods that do not use such similarity scores.
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