INTERSPEECH 2016
September 8—12, 2016, San Francisco, USA

A novel discriminative score calibration method for keyword search

Zhigiang Lv, Meng Cai, Wei-Qiang Zhang, Jia Liu

Tsinghua National Laboratory for Information Science and Technology
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
{lv-zql2,cai-ml0}@mails.tsinghua.edu.cn, {wgzhang,liuj}@tsinghua.edu.cn

Abstract

The performance of keyword search systems depends heavily
on the quality of confidence scores. In this work, a novel dis-
criminative score calibration method has been proposed. By
training an MLP classifier employing the word posterior proba-
bility and several novel normalized scores, we can obtain a rel-
ative improvement of 4.67% for the actual term-weighted value
(ATWYV) metric on the OpenKWS15 development test dataset.
In addition, a LSTM-CTC based keyword verification method
has been proposed to supply extra acoustic information. After
the information is added, a further improvement of 7.05% over
the baseline can be observed.

Index Terms: keyword search, score calibration, CTC, neural
network

1. Introduction

A typical keyword search system is based on the transcriptions
generated by the automatic speech recognition (ASR) system.
Most ASR systems provide a confidence estimate of word pos-
terior probability [1] for every keyword detection. However,
word posterior probability is often overestimated due to the
pruning of the recognizer when decoding. In the decoding pro-
cess, hypotheses which get relatively low likelihoods are re-
moved from the final transcriptions. When computing the pos-
terior probability of a word hypothesis, we usually treat the re-
maining hypothesis space as the total hypothesis space, which
leads to the overestimated probabilities.

To obtain a more accurate confidence estimate for keyword
search, classifiers were trained using features extracted from
lattices and confusion networks ([2], [3], [4]). Discrimina-
tive scores output by classifiers can be used as new confidence
scores and promising results have been achieved. Features used
often include:

 Posterior probabilities and normalized scores after nor-
malizing methods such as keyword specific threshold
(KST) [5], sum-to-one (STO) [6] and probability of false
alarm (pFA) [7].

» Lexical features such as the total number for graphemes,
vowel graphemes, constant graphemes, phones, vowel
phones and consonant phones [4].

 Structure features such as the edge rank, the confusion
network bin size, the ranking score, the relative-to-max
score and the entropy of the bin in confusion networks
([81, [9D.

» Utterance level features such as the start and end time of
the detection relative to the start of the utterance where
the keyword is found [4].
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* Prosodic features such as the pitch for each detection

([4], [8D.

» Language model level features such as the frequency of
the keyword, long contextual language information and
n-gram frequencies ([8], [10]).

Except conventional classifiers, conditional random field
(CRF) [11] has also been employed in score calibration ([10],
[12]). CRF can solve the problem of sequence labeling and of-
ten shows better performance than conventional classifiers. Due
to the nature of sequence processing, CRF often leads to higher
complexity. Soto et al. [8] explored a rank model for rescoring
confusion networks, and significant improvement of WER has
been observed instead of ATW'V.

The performance of discriminative classifiers is mainly up
to feature engineering. To do discriminative calibration for key-
word search, we often have to extract a lot of information car-
ried by lattices and confusion networks. More complex features
such as prosodic and lexical features even need some expert
knowledge about the target language. This is rather tedious and
sometimes impossible, especially when we have no access to
the ASR system or know little about the target language.

In this article, we only extract the word posterior probability
and the corresponding KST normalized score [13] from the final
detection list. Other information contained in lattices or confu-
sion networks is discarded. After normalizing the two scores
using different number of sub-word units in keywords proposed
in this work, we can also obtain satisfying improvement over
the baseline system through discriminative calibration.

Acoustic similarity has also been taken into consideration
for keyword search task and can lead to excellent results ([14],
[15], [16]). They have to compute the similarity between two
detections and do some re-ranking afterwards. To employ the
acoustic information, we propose a LSTM-CTC based keyword
verification method and try to build a universe verification sys-
tem after keyword search. The method is proved to be quite ef-
fective to distinguish false alarms from true hits, and can there-
fore improve the keyword search system further.

In this paper, we briefly introduce the keyword search task
and metrics in Section 2. Section 3 is about the LSTM-CTC
based keyword verification method. Some basic environment
setup is introduced in Section 4. Discriminative calibration re-
sults are presented in Section 5. Section 6 is the conclusion.

2. Task and metrics

The task of keyword search defined by NIST for the
OpenKWSI15 evaluations is to find all the exact matches of
given queries in a corpus of unsegmented speech data. A query,
which can also be called “keyword”, can be a sequence of one or
more words. The result of this task is a list of all the detections

http://dx.doi.org/10.21437/Interspeech.2016-606
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Figure 1: The keyword verification system.

of keywords found by keyword search systems. Each detection
in the list consists of the keyword id, the utterance in which the
detection is found, the start and end time of the detection, and
the confidence score.

To evaluate the performance, term-weighted value (TWV)
[17] is adopted:

#miss(w, 0)
#ref(w)

#fa(w,0) )
T — #ref(w)
()
where 6 is the decision threshold, K is the number of keywords.
#miss(w, 6) is the number of true tokens of keyword w that
are missed at threshold 6, # fa(w, @) is the number of false
detections of keyword w at threshold 6, #re f (w) is the number
of reference tokens of w, T is the total amount of the evaluated
speech, /3 is a constant set at 999.9.

As we can see, TWYV is a function of the decision thresh-
old . A global threshold € is used to make the hard deci-
sion whether a detected keyword is correct. The TWV at the
specified global threshold is the actual TWV (ATWYV). The op-
timal threshold results in the maximum term-weighted value
(MTWV).

1 K
TWV(G):lf?;( + B

3. LSTM-CTC based keyword verification

After having the detection list, all we want to do is to make sure
whether the detection is indeed a correct hit of the keyword or
not. Therefore, we try to build a keyword verification system by
doing force alignment between the char sequence of keywords
and the original speech feature, as is shown in Figure 1.

Connectionist temporal classification (CTC) [18] has been
proved to be very suitable for labeling such unsegmented se-
quence data. Given a input feature sequence X of length 7" and
its char sequence W, CTC is a loss function defined below:

Lore(X,W) =Y p(C1X) =Y [[p(alX), @
Cw

Cyy t=1

where Cy is any label sequence of length 7" corresponds to
the correct char sequence W. By summing up over all sets of
label locations that yield the same label sequence W, CTC de-
termines a probability distribution over possible labelings, con-
ditioned on the input sequence X.
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The long short-term memory (LSTM) neural network [19]
has been demonstrated to be quite effective to deal with se-
quence labeling problems. For our verification system, we put
a CTC layer on top of a LSTM neural network trained directly
using the original speech feature. For training, we use single
word samples form the transcriptions. For evaluation, each in-
put feature sequence is the span of the keyword detection in the
utterance, and the label sequence is the corresponding keyword
char sequence. The CTC loss of the verification system is re-
garded as a new score for the detection.

In fact, the CTC loss of the verification system is similar
to the acoustic likelihood used in ASR systems. The difference
between the two scores lies in:

e The CTC loss is trained on char level and no pronunci-
ation lexicon is needed. The acoustic likelihood in ASR
systems is trained on phoneme level or more precisely
on state level and usually pronunciation lexicon is nec-
essary. They capture acoustic information of different
sub-word unit levels. The training frameworks are also
quite different.

* The acoustic likelihood score is only the likelihood of a
possible label sequence, while the CTC loss is the like-
lihood summation of all possible label sequences, which
makes the CTC loss more approximate to the acoustic
posterior probability. The acoustic likelihood is often a
number of wide numeric range and is hard to be used
directly as a confidence score.

The verification system proposed in this work is not an-
other ASR system. We can view the verification system as part
of an ASR system for it only focuses on verifying whether a
segment of speech feature is corresponding to the specified la-
bel sequence. The ultimate difference is that the verification
system tries to solve the problem of “whether or not” while the
ASR system has to deal with the problem “what it is”. Besides,
we have to process only the segment of the detection instead of
the whole utterance for verification and no language modeling
is needed. The verification system is easier to build and more
flexible.

4. Experiments setup
4.1. The ASR system setup

The baseline keyword search system is the best single system
we built for the OpenKWS15 Evaluations with the very lim-
ited language pack (VLLP) [20]. The VLLP contains only 3
hours of transcribed training data plus 40 hours of untranscribed
training data. Considering the very limited transcribed data re-
source, we do some data augmentation through adding noise
and vocal tract length perturbation (VTLP) [21]. A subspace
GMM (SGMM) based acoustic model [22] is trained using the
augmented dataset. The language model is trained using the
transcriptions of the VLLP training data, together with some
selected web data.

The untranscribed data is then decoded using the trained
SGMM acoustic model and semi-supervised training is per-
formed. The final ASR system is based on the convolutional
maxout neural network (CMNN) acoustic model [23] with 40-
dimensional Mel filterbank features and their first- and second-
order derivatives. Two convolutional layers with 256 maxout
neurons and five fully-connected layers with 1000 maxout neu-
rons are used. Each maxout neurons contains 2 pieces. A max-
pooling layer with a pooling size of 3 is used between the con-
volutional layers. The first convolutional layer has a band width



of 8. The second convolutional layer has a band width of 4.
Dropout training is applied to the fully-connected part of the
CMNN.

4.2. Discriminative score calibration setup

All the keyword search experiments are conducted on the
OpenKWS15 development test dataset, which consists of 10
hours of transcribed data. Detections are divided into 4 classes
[24] : “YES, CORR” representing a correct hit, “YES, FA” rep-
resenting a false alarm, “NO, MISS” representing a true hit but
judged to be a false alarm, “NO, CORR!DET” representing a
correctly judged false alarm.

The keyword list for training the MLP classifier consists of
1657 keywords and 97215 detections. There is a number of de-
tections with the label “NO, CORR!DET”. To avoid the imbal-
ance of training data, only 18884 training samples are selected,
of which there are 4025 “YES, CORR”, 703 “NO, MISS”, 4631
“YES, FA” and 9525 “NO, CORR!DET”. The MLP classifier
contains two hidden layers, of which each has 256 hidden neu-
rons. The keyword list for evaluation consists of 791 keywords,
having 137762 detections.

For each detection list of both the training and evaluation
keyword list, a KST normalization has been done. Therefore,
there is a posterior probability together with its corresponding
KST normalized score for every detection in the detection list.
The two scores can be used to train the classifier. The final
discriminative score output by the MLP classifier is then:

Sfinat = score(Y ES,CORR) + score(NO, MI1SS). (3)

We also take the number of sub-word units in the keyword
into consideration. As have been stated, each keyword consists
of words. Each word consists of characters. We denote the
number of words in a keyword as #words, and the number of
characters in a keyword as #characters. Scores are normal-
ized according to the number of sub-word units:

(1/#words) (4)
®)
Assume that a keyword W consists of n sub-word units and we

denote each unit as w;. The probability of the keyword can be
written as:

Sword = S

1/#characters
Schar = 3( / )

s(W) =[] s(ws). (6)
=1

Therefore, normalized scores in Eq. 4 and Eq. 5 are geometric
means of the original score and they can describe the stableness
of every sub-word unit in the keyword. The two scores also try
to eliminate the effect of different lengths of keywords to some
extent. Similarly, a frame-level normalized score is defined as:
(1/#frames)’ (7)
where # frames is the number of frames where the detection
lasts.

Both the posterior probability and KST normalized score
are normalized according to Eq. 4, Eq. 5 and Eq. 7. Then we
have 8 different scores for training the classifier.

Sframe = S

4.3. LSTM-CTC based verification setup

We use the 3 hours of transcribed data of the VLLP for training
the LSTM-CTC based verification system. Firstly, we split the
utterance into single words according to the transcriptions and
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24600 samples are obtained. 20000 of the 24600 samples are
taken as the training data and the rest as the valid data. Due
to the very limited training data, a quite naive LSTM neural
network is trained using the CTC loss function. The LSTM
network only has one hidden layer and the hidden size is set to
be 100. 54 output char labels are set including a special “blank”
label needed for the CTC loss function.

The training data for the verification system is rather lim-
ited. To obtain a good enough verification system, we try to
“borrow data” from other languages and therefor multilingual
bottleneck (MBN) features ([25], [26]) are employed. The
MBN features are trained using 6 other Babel language packs
supplied for the OpenKWS15 Evaluations. A DNN with 7 hid-
den layers are trained to extract the MBN feature. The sixth
hidden layer is a linear layer with 128 neurons, which produces
the MBN features. Other hidden layers are sigmoid layers with
1500 neurons. The inputs are 40-dimensional Mel filterbank
features plus 3 dimensional pitch features, and their first- and
second-order derivatives. After the 128-dimensional MBN fea-
tures have been extracted, the 9 consecutive feature frames are
concatenated and the feature dimension is reduced to 40 using
LDA and semi-tied covariance transform. More details about
the training of the MBN features can be found in [20].

After the LSTM-CTC network has been trained, the CTC
loss is computed for both the training detection list and the eval-
uation detection list. And the CTC loss is taken as another con-
fidence score for each detection. The same normalization in Eq.
4, Eq. 5 and Eq. 7 is done to the CTC score. That means the
LSTM-CTC verification system introduces another 4 scores for
every detection.

To verify whether the verification system does help improve
the performance of the keyword search system. Some analysis
has been done and the results are presented in Table 1. In Table
1, we denote the posterior probability as “Posterior” and the
KST normalized score as “KST”. The CTC score is denotes as
“CTC”.

Table 1: The arithmetic mean values of different scores for each
class in the training detection list.

YES, NO, YES, NO,

CORR | MISS FA CORR!DET
Posterior 0.7762 | 0.0978 | 0.3271 0.0123
Posterioryora | 0.7975 | 0.1283 | 0.3563 0.0214
Posteriorchar | 0.9316 | 0.5303 | 0.7462 0.3160
Posterior frame | 0.9894 | 0.9009 | 0.9585 0.8229
KST 0.9257 | 0.1328 | 0.7697 0.0120
KSTwora 0.9346 | 0.1744 | 0.7888 0.0516
KSTehar 0.9856 | 0.5867 | 0.9562 0.3681
KSTtrame 0.9981 | 0.8874 | 0.9945 0.7178
cTc 0.0147 | 0.0065 | 0.0039 0.0025
CTCwora 0.0222 | 0.0123 | 0.0062 0.0041
CTCchar 0.3171 | 0.1944 | 0.1826 0.1158
CTCframe 0.8470 | 0.7655 | 0.7857 0.6960

From the results in Table 1, we can see that the CTC score
can help differ every class from each other, especially between
the class “NO, MISS” and “YES, FA”. A big margin between
the two classes is needed to build a high-performance keyword
search system. An ideal condition is that all the detections in
class “YES,FA” can have a lower score than the ones in class
“NO,MISS”. However, for the posterior probability and the
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Figure 2: Comparison of posterior probabilities and CTC
scores for class “YES, FA” and “NO, MISS”.

KST normalized score, the average mean values of class “YES,
FA” is higher than that of class “NO, MISS”, which makes it
difficult to exclude false alarms from the correct hits. For fur-
ther analysis, original posterior probabilities and CTC scores
for classes “YES, FA” and “NO, MISS” have been compared in
Figure 2. Figure 2 shows that for detections with relatively low
posterior probabilities, CTC scores can help find out true hits.
We directly take the CTC score as the final score and evalu-
ate the performance against the baseline system. The results are
in Table 2. For the baseline keyword search system, the word

Table 2: The performance of taking the CTC score directly as
the final score.
| [ ATWV [ MTWV ‘

0.4863 | 0.4917
0.3140 | 0.3170

Baseline
CTC Score

posterior probability is taken as the final score. KST normaliza-
tion is done before evaluation for both the baseline experiment
and the CTC score experiment. From the results, we can see that
though the CTC score can help differ different classes, the score
itself is not a perfect measure for keyword search. Therefore,
we only take CTC scores as features input to the discriminative
classifier in the following experiments.

5. Results and discussions
5.1. Discriminative score calibration results

As has been stated, we try to do discriminative score calibra-
tion without having access to lattices, confusion networks or
some expert knowledge about the target language. Our base-
line discriminative score calibration experiment only employs
the word posterior probability and the KST normalized score.
This experiment is denoted as “Discriminative_2features”.

Then scores normalized by the number of sub-word
units proposed in this work is added and the experiment
adding 6 more normalized scores is denoted as “Discrimina-
tive_8features”.

Finally, the CTC scores output by the verification sys-
tem is added, and the experiment is denoted as “Discrimina-
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tive_12features”.

For all the discriminative score calibration experiments, the
discriminative score output by the MLP is computed according
to Eq. 3. Each experiment also includes a KST normalization
before evaluation. The results are shown in Table 3. We can see

Table 3: The discriminative score calibration results.
| [ ATWV [ MTWV ‘

Baseline 0.4863 | 0.4917
Discriminative 2 features | 0.5018 | 0.5047
Discriminative 8 features | 0.5090 | 0.5131

Discriminative_12 features | 0.5206 | 0.5234

that discriminative score calibration improves the performance
consistently, even trained only using the posterior probability
and the KST normalization score. By adding 6 novel normal-
ized scores proposed here, the relative improvement of ATWV
over the baseline system can reach to 4.67%. After the CTC
scores are added, the improvement can be furthered to 7.05%.

5.2. Discussions

The results above demonstrate the effectiveness of the three nor-
malized scores proposed in this work. The experiments provide
a possible method to improve the quality of confidence scores
for keyword search, even if only the detection lists are supplied.
That is to say, normalizing scores using the number of sub-word
units can provide some extra information. It indicates that for a
detection, the correctness of each component in it is quite im-
portant. This is very similar to the way a human judges whether
a segment of speech is indeed some specified word sequence.
We human beings always try to distinguish the minor differ-
ence. Some further exploration will be done looking into the
details of a detection in the future.

In Section 4.3, it has been shown that the CTC loss has
the potential to differ false alarms from correct hits. However,
when taking the CTC loss as the confidence score directly, the
performance is rather bad. The reason may be the serve lack
of training data. The VLLP only consists of 3 hours’ carefully
transcribed speech and that may limit the potential of our verifi-
cation system. In fact, LSTM neural networks with more hidden
units and bi-directional LSTM neural networks have also been
tried, while didn’t bring much improvement. Assuming more
training data is supplied, the performance of taking the CTC
loss as the final score may be much better. Besides, the LSTM-
CTC based verification system is built only for verifying char
sequence. Some different sub-word units such as phonemes and
morphemes can also be tried.

6. Conclusions

In this paper, we have proposed three novel normalized scores
for discriminative score calibration. A LSTM-CTC based verifi-
cation system using only 3 hours of transcribed data is also built
to supply extra information. Experiments indicate that the three
normalized scores and the verification loss can help improve
the performance of discriminative score calibration. Training
an MLP classifier with score features extracted from the detec-
tion list and the CTC loss, we can obtain a relative improvement
of up to 7.05% over the baseline.
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