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Abstract
Model adaptation is an important task in many human language
technology fields, as it allows one to reduce differences that
arise due to various forms of variability. Here, we focus on
the speech activity detection (SAD) task, in the context of the
DARPA RATS program, where the training data do not cover all
channels (transmitter/receiver characteristics) that are encoun-
tered at test time. For supervised adaptation, limited manu-
ally labeled data from the (novel) channel of interest are used
to adapt the model; for unsupervised adaptation, the labels are
automatically generated with a baseline model. The modeling
is done with long short-term memory neural networks, and we
make the case that strong regularization is of paramount im-
portance when adapting such models. Results on two different
datasets show that adaptation gives rise to large gains (at least
27related task, that of active learning, is also considered. In
active learning, data to be annotated for supervised adaptation
are selected automatically, with the ultimate goal of maximiz-
ing performance. We investigate an algorithm for active learn-
ing that utilizes the output of a SAD decoder and show that it
performs significantly better (by 10% relative) than random se-
lection.
Index Terms: speech activity detection, model adaptation, ac-
tive learning

1. Introduction
When working with real data, one frequently encounters situta-
tions where the test data are not well-matched with the training
data used to train a machine learning system. This can be quite
problematic, as the performance of the machine learning sys-
tem could become unpredictably bad, especially when there are
multiple degrees of variation. This is what we deal with in this
paper, in the context of the speech activity detection (SAD) task,
done under the DARPA RATS program [1].

The goal of SAD is to detect the locations in an audio
stream that contain speech. These locations may be used to
guide manual inspection, or to determine where further down-
stream processing, such as keyword search or speaker identifi-
cation, can be performed more reliably.

In RATS, speech is transmitted through “channels”, which
correspond to unique transmitter/receiver characteristics. Some
of these channels are available to annotators, who generate
training data for building automatic SAD systems. This en-
tails listening to the audio to determine where speech occurs.
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However, a number of channels are not available for annotation,
or are only available in limited quantities. Since these “novel”
channels can be significantly different from the ones encoun-
tered in training, the performance drop can be dramatic.

To alleviate this problem, model adaptation is usually done.
For example, in speech recognition, unsupervised speaker adap-
tation is done by estimating a linear transform that makes fea-
tures less variable across speakers, or, equivalently, GMM mod-
els better matched to each speaker. In an unsupervised adapta-
tion setting, this entails using a first-pass transcription of the
novel speaker, which is used as noisy training data for estimat-
ing the transform. Consistent gains in word-error-rate are ob-
tained with this approach [2]. Of course, when supervised data
from a novel speaker are available, the task is less prone to error.

In this paper, we focus on adapting neural networks (NN),
specifically, long short-term memory (LSTM) models. LSTMs
have performed very sucessfully in a variety of tasks and do-
mains [3, 4, 5], so, it is a natural choice for the problem at hand.
NN model adaptation can be done in a variety of ways [6, 7, 8]
and we investigate some here.

We focus on three aspects of adaptation: (i) Unsupervised
adaptation, where there are no manually annotated data from the
novel channel of interest. So, one has to rely on (usually noisy)
automatic labels obtained in a first-pass decoding. (ii) Super-
vised adaptation, where there is limited amount of supervised
data from the novel channel of interest. (iii) Supervised adapta-
tion with active learning, where the annotation of the data used
for supervised adaptation is done “dynamically”, i.e., it can be
chosen in a judicious way by the user (usually using automatic
means). The end goal is to guide the data selection (based on
information, such as the output of a decoder) in a way that max-
imizes the information content of the data selected.

The performance measure used in this paper is the equal-
error-rate (EER), defined as the point on the DET curve where
the miss rate is equal to the false-alarm rate (defined below):

pMiss =
total FN time

true speech duration
, pFA =

total FP time
true non-speech duration

,

(1)
(FN stands for “False Negative” and FP for “False Positive”.)

The paper is organized as follows: Section 2 gives an
overview of LSTMs, and provides some details about how they
are used for SAD. Section 3 gives some background on the
problem of model adaptation for neural networks, and discusses
techniques for regularizing their training in the presence of lim-
ited or noisy data. Section 4 focuses on active learning. Two
criteria for active learning, (i) entropy-based and (ii) committee-
based, are discussed in detail. Experimental results with model
adaptation and active learning are presented in Section 5, and
concluding remarks appear in Section 6.
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2. Long Short-Term Memory Networks
Long Short-Term Memory (LSTM) neural networks are recur-
rent networks that are especially useful when training from se-
quences of data where a long context provides useful informa-
tion. They do not suffer from the vanishing gradient problem of
regular recurrent networks [9], as their unique structure allows
them to “remember” the gradient of the error for long durations,
and “forget” it when it is not useful [9].

Bidirectional LSTMs are a variant of the above, where the
data are scanned in both directions during training and testing.
We found out that BLSTMs outperform LSTMs in the SAD
task, so, we used them exclusively in this paper.

For SAD, we investigated several BLSTM architectures and
input features. Fitting models into GPU memory limited the
overall model size, but we experimented with a variety of ar-
chitectures, such as 30x250x250x2, 30x250x250x250x2 and
30x500ffx500ffx100ffx500x500x2, where ‘500ff’ means 500
feed-forward logistic units. Training was done with stochastic
gradient descent using a decaying learning rate and a heldout
stopping criterion. Training ran on single NVIDIA Tesla K80
machines using a modified version of the currennt toolkit [10].

Because of computational compexity constraints, we fo-
cused on a single architecture with two hdden layers contain-
ing 250 nodes each. The per-frame input features were 15-
dimensional PLPs with their derivatives (deltas). The targets
were binary variables, indicating the presence or absence of
speech at each frame.

3. Model Adaptation
In model adaptation, the requirement is to improve the perfor-
mance of a baseline model as much as possible when applying
it to a new domain not encountered in the training data. In the
DARPA RATS program, we must adapt to speech transmitted
through novel “channels”, that is, transmitter/receiver pairs that
have unique characteristics such as frequency band, modulation
technique, etc. Performance on novel channels is usually very
poor with NNs, as they are very good at learning the given train-
ing data very well; adaptation techniques that utilize manually
annotated or automatically labeled data are thus very important.

There are a number of approaches to neural network adap-
tation listed in the literature (e.g., see [6, 7, 8]). In all these
cases, adaptation is done by running a few training iterations
with a pre-trained network as a starting point, using data from
the novel domain. Regularization in the training is of impor-
tance, as either the adaptation data is limited (supervised adap-
tation) or noisy (unsupervised adaptation). In our experiments,
we have tried various forms of regularization, such as (i) few
number of iterations (either fixed or based on a relative im-
provement threshold), (ii) reduced learning rate, or (iii) updat-
ing parameters of one or only a few layers. In the case of un-
supervised adaptation, regularization can also be done by sub-
selecting data to use (e.g., throwing away data that are too noisy
or for which the decoder is too uncertain and can lead to degra-
dation). In all these approaches, the goal is to learn a generaliz-
able model, i.e., prevent a situation where the model memorizes
the new data.

As mentioned above, in the case of unsupervised adapta-
tion, one may want to use automatic labels that are more re-
liable, e.g., correspond to locations where the confidence of
the classification exceeds a threshold. We have done experi-
ments that remove data whose log-likelihood ratios are between
a range of percentiles (e.g., 40%/60% and 30%/70%) but have

not noticed any gain over using all of the automatic labels.

4. Active Learning
The goal of active learning is to select data to annotate such
that the benefit of using that data in a supervised learning (or
supervised adaptation) setting is maximal. Of course, this is
applicable in cases where the unlabeled data is plentiful and it is
impractical (e.g., because of budgetary constraints) to annotate
all of it. So, the research question in active learning is all about
finding the most “informative” parts of the unlabeled data and
doing a careful selection within the given budget. We assume
that there is a minimum segment duration d for which it makes
sense to have a person listen to the audio and assign labels. We
set d = 5 seconds in our experiments.

The most obvious way of selecting data for annotation is
to do it randomly (or, uniformly); this gives us a baseline
with which to compare other more complicated algorithms.
To see the benefit of maximum diversification, we considered
three variants of random selection: (i) Random across speak-
ers and within each speaker: speakers are randomly picked,
and d-duration segments within each speaker are also randomly
picked (could be a silence portion of the audio). (ii) Uniform
across speakers and random within each speaker: similar to (i),
except that the maximum possible number of speakers is picked.
This means that as little audio from each speaker as possible is
selected, in order to ensure maximum diversity across speakers.
(iii) Uniform across speakers and within each speaker: similar
to (ii), except that segments within each speaker are spread at
uniform intervals so that they cover the audio to the maximum
possible extent.

We ran the random methods (i) and (ii) 10 times and aver-
aged the results.

We also ran versions of (ii) and (iii) so that speakers are
selected based on a uniform coverage of channels; this allows
us to cover all channels equally (so that they all have the same
chance to improve) instead of being influenced by how many
speakers are assigned to each channel.

Our results show that all of the above methods perform al-
most the same, for all amounts of selected audio. Since the
uniform method (iii) is better, on average, than both (i) and (ii)
(with average EERs 5.30%, 5.29% and 5.28% for (i), (ii), and
(iii), respectively), the uniform method is selected in the results
below as the baseline.

We also considered a less-diversified alternative of the
above, where, instead of picking as many d-long segments as
possible, the maximum amount of audio per speaker was cho-
sen (up to the point where all channels had at least some se-
lected audio). This alternative worked much worse (e.g., re-
sulted in EERs which were at least 17% worse than picking as
many short segments as possible). This was expected, as pick-
ing enough segments to cover enough variations in the audio is
an important aspect of the learning.

The above algorithms do not use any information about the
underlying uncertainty of the model, which is what active learn-
ing is supposed to address. So, we implemented two algorithms
that rely on one or more decodings of the unlabeled active learn-
ing pool of data:

• Entropy-based, where the selected segments correspond to ar-
eas of the audio for which the decoder is maximally uncertain
about [11, 12]. In mathematical terms, the above algorithm
scores each audio frame according to the following formula:

Se(f) = −pf log(pf )− (1− pf ) log(1− pf ) (2)
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Figure 1: EER results on (a) Dev-2 and (b) Dev1-p3 with un-
supervised adaptation. The amount of unsupervised data was
about 70 hours for Dev-2 and 5.4 hours for Dev1-p3.

where pf is the posterior computed by the NN for frame f .

• Committee-based, where the selected segments correspond to
areas of the audio for which multiple decoders1 maximally
disagree about [13]. The formula for scoring each frame is:

Sc(f) =
1

N

N∑
i=1

D(pf,i‖pf ), (3)

where pf,i is the posterior computed by the i-th decoder (NN)
for frame f , and pf is the average of those posteriors for
frame f . Note that this committee-based method is a mod-
ified version of the one in [13]2.

We found in our experiments that the committee method
does not offer an advantage over the entropy method, and re-
quires much more computational effort (multiple decodings).
Since it is impractical to use it in a realistic scenario, we only
consider the entropy method in the rest of the paper.

A few details about how the segments with the highest score
(entropy or committee) are selected appear below.

1In addition to the baseline model, 2 more models were used: a NN
with 2 regular feedforward layers of size 500 each, followed by 2 LSTM
layers of size 250 each, and a NN with 3 feedforward layers with sizes
500, 500 and 100, followed by 2 LSTM layers of size 500 each.

2The disagreements on hard decisions in [13] were replaced by the
distances between the “soft” decisions pf,i. This latter approach avoids
the problem of having to come up with a threshold for each one of the
decoders (which would add one more source of error to the process).
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Figure 2: EER results on (a) Dev-2 and (b) Dev1-p3 with su-
pervised adaptation, for various amounts of supervised data.

Uniform segmentation: After each frame is scored with one
of the algorithms above, segment-level scores are computed
(at a 1-second granularity) by averaging the corresponding
frame-level scores. Speaker-specific segments are then sorted
according to their scores, from high-to-low. Channels and
speakers within each channel are then selected in a round-robin
fashion, each time selecting the highest-scored segment for
that speaker, making sure there is no overlap between the new
segment and the previously selected ones. As mentioned above,
selected segments have a minimum duration d = 5 seconds.
One thing to consider in this approach is that, when the amount
of audio selected is close to the total amount available, this
“greedy” approach could result in “gaps”; that is, short amounts
of audio that cannot be selected in the round-robin because
they lie between two other selected segments (or, lie at the
boundary). To deal with this (again, only when the amount
of audio selected is close to the total amount available), we
decrease the granularity when computing segment scores (e.g.,
go from 1 second to 5 seconds); this leaves enough room
between two non-adjacent selected segments.

Dynamic programming: A lattice over segmentations is
built for the audio of each speaker, allowing each d-second
long segment to appear anywhere in the audio, as long as con-
secutive segments do not overlap. The selection of segments is
then done by finding the maximum-scored “path” in this lattice.

As we have found in our experiments, dynamic program-
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ming does not give better results than the uniform segmentation.
When the amount of audio selected is not close to the maximum
amount of audio available, both approaches result in segments
that are usually far apart from each other, and the constraints
of the dynamic program become less important. On the other
hand, when almost all of the audio is selected, the remaining
variations of the two approaches are not enough to result in a
significant difference in the trained models.

5. Experimental Results
The datasets we used in our experiments were the following:
(i) For training a baseline model, we used 1300K+ hours of
channels B, D, E, F, G, H, as well as the “clean” channel, ob-
tained through NIST for the OpenSAD-2015 evaluation. (ii)
For development purposes (i.e., to tune parameters and obtain
best settings) we used the novel channels XA, XH, XI, XK,
XN of Dev-2 (about 148.9 hours), obtained through NIST for
OpenSAD-2015. (iii) For testing purposes (i.e., to blindly test
our models and evaluate performance) we used the novel chan-
nels A and C of Dev-1-p3 (about 10 hours). Both development
and test set were further split into an “active learning pool” and
an “evaluation” set; the former was used in the supervised learn-
ing and active learning tasks, for providing manually annotated
(supervised) data from the novel channel of interest, while the
latter was used to test the models and fairly compute perfor-
mance.

Figure 1(a) shows the EER obtained with unsupervised
adaptation, under various regularization approaches: (i) running
training for a small, fixed number of iterations (e.g., 2), (ii) us-
ing a threshold (e.g., 10%) on the improvement of the cross-
entropy to allow early stopping; (iii) same as (ii), but using a
more tight threshold (1%) that allows us to run more iterations;
(iv) running training to convergence. Variants of the above are
also obtained depending on whether only the last layer or all
layers of the network are updated. As it is clear from this plot,
the most robust approach is to just run a fixed number of itera-
tions of backpropagation, having the baseline model as a start-
ing point. The gain obtained over the non-adapted output is 27%
relative on Dev-2 and 42% relative on Dev1-p3. Another inter-
esting observation is that allowing the model to train to con-
vergence can make some of the channels improve, while other
channels degrade significantly. This explains why the EER af-
ter training to convergence is better than stopping at an earlier
iteration when updating all layers. Still, it is much worse than
just running very few iterations of training. Figure 1(b) shows
the gain from unsupervised adaptation on Dev-1-p3, after ap-
plying the best method (fixed number of iterations), selected on
the tuning set.

Figure 2 displays EERs for various amounts of supervised
data used in the adaptation, along with the EER obtained with
the best setting for unsupervised learning. As it is clear from the
plots, when the amount of supervision is low, supervised adap-
tation is on par with unsupervised adaptation, while it improves
substantially with more data (reaches 44% on Dev-2 and 58%
on Dev-1-p3). As with the case of unsupervised adaptation, us-
ing a fixed number of iterations (e.g., 5) and updating all layers
of the network yields the best results.

Figure 3 shows learning curves obtained by varying the
amount of data used for annotation, in increments of 24 min-
utes (up to 4 hours). As can be easily seen, for both the de-
velopment and test data, the entropy method outperforms the
uniform method. Note that we also tried to combine this with
unsupervised adaptation (first do unsupervised adaptation of the
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Figure 3: Learning curves on (a) Dev-2 and (b) Dev1-p3, for
various algorithms for data selection.

models on the whole test data and then adapt based on the su-
pervised data) but we did not notice any gain over adapting the
baseline model.

Note that, since the test part of Dev1-p3 is small (almost
6 hours) it makes sense that all active learning approaches per-
form similarly when the amount of audio selected is almost the
whole audio. The relative gain over the uniform method is 10%,
on average over all data durations, for both data sets. This shows
that it is clearly beneficial to utilize the output of a decoder when
performing active learning, as it guides the learning to focus on
areas where it is needed the most.

6. Conclusions
In this paper, we investigated various techniques for adapting a
LSTM, for the task of speech activity detection. Our focus was
on unsupervised adaptation, supervised adaptation and super-
vised adaptation combined with active learning. We saw that
strong regularization is very important when adapting to new
channels, especially when the amount of data is limited or the
labels are automatic (noisy). Large gains of 42% relative were
obtained on a blind data set with both unsupervised and super-
vised adaptation. Additional 10% relative gains are obtained
with active learning, when using the output of one or multiple
decoders to guide the selection. Future work will focus on un-
derstanding how different amounts of training affect different
channels and how a more flexible form of regularization can
prevent the performance on all channels from degrading.
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