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Abstract

We propose a novel unsupervised model adaptation framework
in which a neural network uses prior knowledge of the statis-
tics of its output and hidden layer activations to update its
parameters online to improve performance in mismatched en-
vironments. This idea is inspired by biological neural net-
works, which use feedback to dynamically adapt their com-
putation when faced with unexpected inputs. Here, we intro-
duce an adaptation criterion for deep neural networks based on
the observation that in matched testing and training conditions,
the node co-activation statistics of each layer in a neural net-
work are relatively stable over time. The proposed method thus
adapts the model layer by layer to minimize the distance be-
tween the co-activation statistics of nodes in matched versus
mismatched conditions. In phoneme classification experiments,
we show that such node co-activation constrained adaptation in
a deep neural network model significantly improves the recog-
nition accuracy over baseline performance when the system is
tested in various novel noises not included in the training.
Index Terms: online adaptation, deep neural networks, speech
recognition, mismatched conditions

1. Introduction

One common issue that plagues practical applications utilizing
deep neural network (DNN) systems is the mismatch between
the training and real-world testing conditions. For example, in
the application of automatic speech recognition, since the test-
ing acoustic environment is difficult to pre-estimate, the perfor-
mance generally suffers in the presence of unexpected noise. To
improve model robustness, one popular scheme is to implement
multi-condition training, in which improved generalization is
achieved by training on various environments [1]. However,
such schemes usually require a large amount of training data,
which can be difficult to find for low-resource tasks. Another
limitation of such an approach is that there is no guarantee of
generalization to any particular unseen condition, even when
networks are trained with largely enhanced data [2].

Model adaptation is another common technique for correct-
ing the mismatch between training and test conditions. Cur-
rently in automatic speech recognition, model adaptation tech-
niques for DNN-HMM acoustic models fall into three main cat-
egories [3]. The first is to apply a linear transformation to either
the input features, softmax output, or hidden layer activations
[4, 5, 6]. Adaptation may also be applied through conservative
training, in which regularization to model weights or outputs is
added to the adaptation criterion [7, 8]. Finally, subspace mod-
els construct a subspace for speaker or noise information, then
adapt the network weights as a point in the subspace [1, 9, 10].
Such techniques can be applied in noise-robust speech recog-

nition [1, 11], where it is common to implement noise-aware
training. Here, features are appended to the standard Mel spec-
tral or cepstral features that characterize the noise present in an
utterance [1, 12, 13].

Network adaptation is also found ubiquitously in biologi-
cal neural networks, which have the ability to quickly adapt to
implement novel, task-related computations. For example, in
the human auditory cortex, it has been shown that top-down,
knowledge-driven global plasticity can facilitate the extraction
of acoustic parameters relevant for a given task [14], such as the
separation of a target signal from background noise [15]. Fur-
thermore, it has been postulated that the correlational structure
of neural activity aids in the separation of signals with temporal
structure [16, 17].

Inspired by these biological mechanisms, in this study we
propose a novel unsupervised neural network adaptation tech-
nique incorporating similar top-down feedback, which allows
the network to compensate for the mismatch between training
and testing conditions. Our technique is based on the notion
that through initial training, the statistical properties of the out-
put and hidden activations of a neural network can be calculated
in ideal conditions. Consequently, in mismatched testing condi-
tions, the network can use this prior knowledge of its expected
hidden layer and output node co-activation patterns to update
the transformation of an input signal by adapting the network
weights to restore the expected co-activation patterns. This is
accomplished by maximizing the similarity of the co-activation
patterns of nodes in a layer to the reference calculated during
training. Because this particular error metric is differentiable
with respect to the network weights, optimization can be per-
formed through backpropagation. We demonstrate the feasi-
bility of node co-activation constrained adaptation (NCCA) on
the task of phone recognition in neural networks trained on the
TIMIT benchmark. Our results demonstrate the superior gener-
alization power of networks adapted with NCCA in noisy con-
ditions that were not included in the training of the network.

2. Proposed Model

Implementing NCCA in a neural network model requires three
components: an unsupervised measure of network perfor-
mance, an error metric that quantifies deviation from desired
performance, and a method to adapt the network weights to
minimize this error signal.

2.1. A statistical model of network activations

We create a statistical model of nodes in any layer ` of a neural
network by defining a co-activation matrix of node responses Y
over time, normalized over utterance duration T :
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Here, i and j index over N nodes in a layer. This metric may
have a particular interpretation depending on the task the net-
work is designed for. In the example of a neural network acous-
tic model for speech recognition, the co-activation matrix of the
output layer typically reflects monophone or triphone confusion
patterns in the network, since classes that are more frequently
jointly assigned weight in the posterior distribution are more
likely to be confused. Likewise, because it has been shown
that individual nodes in a neural network become selective to
particular phonetic features [18], the co-activation of the hid-
den layers should encode information about the distributions of
phones present in a speech signal. We quantify in section 3.2.2
the dependence of this statistic on signal duration T .

2.2. An unsupervised error signal to measure network per-

formance

We define the error signal of the network E` in layer ` as the
square of the Frobenius norm of the difference between the co-
activation matrix C` and the expected co-activation matrix C`

R,
which is computed during the training phase. This can be writ-
ten as:
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The objective can be applied to the output distribution or the
activations of any hidden layer.

2.3. Adapting the network weights to minimize the objec-

tive

An important property of the proposed error metric in (2) is
that it is differentiable with respect to each node activation at all
time points. Therefore, we can use the chain rule to compute the
error derivative with respect to each weight in the network, then
use gradient descent to backpropagate this unsupervised error
to optimize the network parameters. At any time t, the partial
derivative of the error E` in layer ` containing N nodes with
respect to the activation y`

k of node k can be written:
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Any matrix element c`Rij of the reference co-activation matrix
C`

R is invariant with respect to the node activation y`
kt. Addi-

tionally, the derivative of the first term is only nonzero when
t = ⌧ and i \ j = k. Thus,the above expression can be written
in terms of the Kronecker delta function:
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the error with respect to the activation of node k at one partic-
ular time point. Averaging this value over the duration of an
utterance yields the expected error over time @E`

@y`
k

. Using tradi-
tional backpropagation with learning rate ↵, we can adjust the
weight w between node k in layer ` and node i in layer `� 1 in
the network using:
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3. Experiments and results

To provide an intuitive account of how node co-activation con-
strained adaptation (NCCA) works in a neural network model,
we first incorporate the proposed feedback in a basic autoen-
coder network [19]. We then demonstrate the efficacy of node
co-activation constrained adaptation in deep neural network
acoustic models trained for phoneme recognition.

3.1. Autoencoder

We incorporate our adaptation scheme into a feed-forward au-
toencoder network on the TIMIT speech corpus [20] to recon-
struct an input spectrogram X to a reconstructed output Z us-
ing the loss function L = ||X � Z||2F . The input and output
of the autoencoder network are 257 frequency channels, and
the network has one hidden layer consisting of 128 nodes. All
nonlinearities consisted of the hyperbolic tangent function. Fea-
tures were extracted using log-scale spectrograms, then scaled
in the range [�1, 1] to fall within the operating range of the non-
linearity. The reference statistic of the hidden layer CHL

R was
computed during training.
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Figure 1: An autoencoder adapted with NCCA. (A-C) Spectro-
grams and co-activation matrices CHL

t for NCCA epoch t for
the clean target spectrogram Y , noisy network output Zt=0, and
network output Zt=100 after adaptation. (D) Training objective
L and NCCA objective E as a function of adaptation epoch.
Shown at right is the change in the weights �W .

The autoencoder was trained only on clean speech, with the
result that distortions in the input space are faithfully mapped
to the output. Figure 1 shows the result of introducing NCCA
into the autoencoder using additive noise from the NOISEX-92
database [24] (white noise at an SNR = 10dB, with CHL cal-
culated using 64 random utterances from the TIMIT test set).
By applying NCCA on the weight matrix WHL

in connecting the
input and hidden layer of the network, we show that distor-
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tions can be significantly suppressed in the reconstructed out-
puts. Before adaptation (t = 0), the co-activation matrix of the
network output CHL

t=0 in noise differs significantly from the ref-
erence CHL

R calculated from a clean utterance (Figure 1A-B).
Here, feedback is applied for 100 epochs of backpropagation
using equation (5). After each epoch, weights are adjusted and
the co-activation matrix CHL

t is recomputed. Through feed-
back, the network is able to recover the statistical structure of its
activations in the clean condition (Figure 1C). We show in Fig-
ure 1D that the typical training loss function L = ||X�Zt||2F is
closely related to the true objective E in equation (2). It is worth
emphasizing that the network has no knowledge of the noise; it
only uses the expected statistics of the output in clean condi-
tions to re-wire itself, which results in suppression of unwanted
variability. The change in the weight matrix from hidden to out-
put layer (�wik) is shown in Figure 1D.

3.2. Neural network acoustic models

3.2.1. Neural network architecture

We incorporate our proposed model into feed-forward neural
networks trained for phone recognition on the TIMIT speech
corpus [20] with utterances common to all speakers (SA utter-
ances) excluded. Networks were trained on two targets: mono-
phone outputs (144 nodes corresponding to the beginning, mid-
dle, and end of 48 phone labels) and triphones (1888 context-
dependent outputs). The phone labels used were mapped from
the original 61 labels of TIMIT to a subset of 48 for the softmax
posterior distribution, then to 39 labels for scoring [25]. Forced
alignments were obtained with the TIMIT s5 mono and tri1
recipes from the Kaldi speech recognition toolkit [26]. Exper-
iments were performed on three acoustic models: two context-
independent monophone output networks with five hidden lay-
ers each and 256 and 512 nodes per hidden layer, respectively,
and one context-dependent triphone output network with four
hidden layers and 2048 nodes per hidden layer.

Models were trained using Theano [23] using a sigmoid
nonlinearity and a 20% and 50% dropout rate on inputs and
hidden layers, respectively [27, 28]. The reference statistic C`

R

for the output and each hidden layer ` was computed during
training. The input features to all networks were 11 shifted
frames of 13-dimensional log Mel filter-bank coefficients with
appended deltas and double-deltas (429 dimensions total) with
applied cepstral mean and variance normalization. Decoding
to obtain phone error rate (PER) was performed using bigram
language models. Feature extraction and decoding were per-
formed with Kaldi. All reports of frame-wise phone accuracy
and PER are reported for the core TIMIT test set (24 speak-
ers, 192 utterances). An additional 50 speakers (400 utterances)
were excluded from training and used as a validation set.

To determine the efficacy of the adaptation scheme, noise
was artificially added to the test and validation sets from sam-
ples of white, pink, babble, and destroyer engine noise from the
NOISEX-92 database [24] at SNRs of 0, 10, and 20 dB.

3.2.2. Adaptation utterance batch size estimation

Node co-activation constrained adaptation (NCCA) is succes-
sively implemented in each layer of the network (Figure 2),
where each layer regulates itself by changing the weight pa-
rameters connected to the preceding layer. Because the co-
activation matrix C` of node activations in response to speech
is used in our error metric, it is key to evaluate the dependence
of this statistic on the duration of the sample of speech used

to generate it. To determine what signal duration is needed to
obtain a good estimate of C`, we calculated the average frame-
wise classification accuracy for all noise types and SNR as a
function of NCCA epoch for test co-activation C` calculated
from utterance batch sizes n 2 [2, 4, 16, 32, 64]. The learning
rate was kept fixed at 0.001. Figure 3A shows classification ac-
curacy as a function of batch size after adaptation in the first
hidden layer of a monophone network with 256 nodes per hid-
den layer. We can see that performance is improved for larger
batch sizes, and that for small batch sizes (n < 4), the computed
C`=1 is not representative of the training statistics, resulting in
severe overfitting. However, with enough data (n > 4), we
observe that minimizing the unsupervised error E does indeed
result in improved frame accuracy. Figure 3B confirms that in-
creasing error in our objective in equation (2) reliably correlates
with lower classification accuracy for noises at various SNRs.

It is intuitive that incorporating adaptation into the output
layer of the network will improve classification accuracy, since
the objective at the output forces the output probability distri-
bution to be closer to that of the unadapted model. However,
the adaptation scheme outlined in Figure 2 also places the addi-
tional constraint on the system that the correlation within hid-
den layer activations should be restored. We demonstrate that
performing adaptation layer-wise starting from the first hidden
layer also improves performance (Figure 3C).

Finally, we wanted to determine if output layer size affected
the signal length needed to obtain a good estimate of the output
layer statistics. To do this, for the 512 node per hidden layer
monophone model and the triphone output model, we computed
Cout and calculated the correlation of this co-activation ma-
trix to the reference matrix Cout

R for various batch sizes, with
batches randomly sampled from the test set. Figure 3D shows
that with 64 utterances, an accurate estimation can reliably be
obtained for both a monophone and triphone model at the out-
put layer. The number of utterances needed for both models is
very similar, especially with increasing batch size n; this may
be due to the fact that many of the triphone output states occur
infrequently. Thus, for the remainder of the experiments in this
study, we utilized a batch size of n = 64, which corresponds to
approximately three minutes of speech (Figure 3E).

3.2.3. Experimental evaluation

We evaluated our adaptation scheme for the task of improv-
ing phoneme recognition in unseen noises. We did so in two
neural network models: the monophone model with 512 nodes
per hidden layer (100 adaptation epochs, base learning rate
↵0 = 0.005) and the triphone model (50 adaptation epochs,
base learning rate ↵0 = 0.0025). Because the gradient of the
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E2 adaptation Eout adaptation

W in1

W 12
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Figure 2: The sequence of operations for implementing node co-
activation constrained adaptation (NCCA) in a neural network
with two hidden layers. Adaptation is applied sequentially in
all hidden layers, then in the output layer.
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Average relative
White Pink Babble Destroyer PER reduction

Network SNR BL +NCCA BL +NCCA BL +NCCA BL +NCCA (all noises)
1 26.7%

512 nodes, 5 layers 20 dB 38.8% 33.8% (12.9%) 34.9% 32.3% (7.4%) 34.4% 32.7% (4.9%) 33.6% 31.9% (5.1%) 7.6%
monophone output 10 dB 55.1% 45.4% (17.6%) 50.3% 43.4% (13.7%) 49.0% 46.6% (4.9%) 47.3% 42.4% (10.4%) 11.7%

0 dB 69.0% 61.2% (11.3%) 68.1% 61.3% (10.0%) 69.5% 65.9% (5.2%) 66.5% 62.3% (6.3%) 8.2%
9.2%

1 22.9%
2048 nodes, 4 layers 20 dB 37.2% 33.1% (11.0%) 32.5% 30.0% (7.7%) 31.0% 30.1% (2.9%) 31.0% 28.8% (7.1%) 7.2%

triphone output 10 dB 57.9% 50.4% (13.0%) 53.5% 45.4% (15.1%) 49.4% 45.6% (7.7%) 47.9% 43.2% (9.8%) 11.4%
0 dB 74.1% 67.1% (9.4%) 74.6% 66.0% (11.5%) 73.6% 68.2% (7.3%) 70.8% 65.3% (7.7%) 9.0%

9.2%

Table 1: Model performance measured in phone error rate (PER) for model baseline performance in noise (BL) and after incorporation
of node co-activation constrained adaptation (+NCCA). PER for the clean condition is shown by SNR = 1. Relative PER reduction
is shown in parentheses for each condition; grand average relative PER reduction over all conditions is shown in bold.
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Figure 3: (A-C) Monophone DNN (256 nodes). (A) Frame ac-
curacy after adaptation in hidden layer 1 for various utterance
batch sizes n as a function of NCCA epoch, averaged over noise
types and SNR. (B) Relationship between error E and frame ac-
curacy for various noise types and SNRs (test set). (C) Frame
accuracy with adaptation applied sequentially in all hidden lay-
ers. (D) Correlation between Cout

R and Cout for batch size n
for monophone (512 nodes) and triphone outputs. Error bars
show standard deviation. (E) Corresponding duration (s) for
batch size n.

error E` tends to drop in magnitude for deeper layers, leading
to reduced error gradients and smaller adaptation effects, the
learning rate for each layer was set to ↵` = ↵0/E

`
t=0 with the

constraint ↵` < 250. Doing so was generally found to improve
performance over a fixed learning rate. To prevent overfitting,
we also used a validation set with batch size matched to the
adaptation utterances and stopped adaptation in any layer if the
validation error did not decrease for 10 consecutive epochs.

Table 1 shows the results after incorporating NCCA into
both neural network models. Baseline phone error rate (PER)
in clean conditions (SNR = 1) for the monophone and triphone
models is 26.7% and 22.9%, respectively. For the triphone
model, this is comparable to the performance of the Kaldi s5
DNN implementation (23.0% PER on the test set, Dan’s DNN).
For each noise type and SNR, baseline performance (BL) is
compared with results from the adapted model (+NCCA), with
relative PER reduction shown in parenthesis. Over all noise
types and SNRs, the average relative PER reduction was 9.2%
in both models. We should also note that PER reduction was

greater for more stationary noises such as white and pink noise,
although improvements were seen for all noise types.

4. Conclusions

In this study we introduced a novel unsupervised neural network
adaptation technique, which we have termed node co-activation
constrained adaptation (NCCA). Our method works by placing
a constraint on the co-activation pattern of nodes in the hidden
and output layers of the network, which forces activations in
each layer to be similar to those of the unadapted model. We
show that this technique is effective in an autoencoder model
and in a neural network phone recognition task, where in a large,
context-dependent DNN we obtained an average relative PER
reduction of 9.2% across a variety of artificial noisy conditions.

This objective differs from other adaptation techniques
such as unsupervised KL-divergence regularization [8] because
while the interpretation of the adaptation criterion at the out-
put layer is similar, the way in which it is accomplished is
fundamentally different. Our model places constraints on co-
activation statistics rather than probability distributions, mean-
ing that it can be applied in an unsupervised manner to out-
put and any hidden layers. Additionally, our technique utilizes
second-order moments, meaning that it is possible to recover
corrupted or missing activation patterns as long as they are cor-
related with other, less noisy node activations.

Future directions for this work in DNN acoustic models in-
clude extension into larger datasets with various mismatched
train and test conditions while implementing hyper-parameter
optimization [29, 30] or low-rank matrix factorization tech-
niques [10, 31]. It is also possible to loosen the statistical con-
straint on hidden layer activations by allowing the complete
backpropagation of error as adaptation is applied sequentially
in the network, or to apply NCCA in other DNN architectures.
We would also like to emphasize that although we have demon-
strated this technique in noisy phone recognition, NCCA is gen-
eralizable to any neural network where node activations of any
hidden or output layer encode predictable temporal statistics.
This applies to both discriminative and generative models in a
variety of applications.
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