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Abstract
Most recently proposed near-end speech enhancement methods
have been evaluated with the overall power (RMS) of the speech
held constant. While significant intelligibility gains have been
reported in various noisy conditions, an equal-RMS constraint
may lead to enhancement solutions that increase the loudness
of the original speech. Comparable effects might be produced
simply by increasing the power of the original speech, which
also leads to an increase in loudness. Here we suggest mod-
ifying the equal-RMS constraint to one of equal loudness be-
tween the original and the modified signals, based on a loudness
model for time-varying sounds. Four state-of-the-art speech-
in-noise intelligibility enhancement systems were evaluated un-
der the equal-loudness constraint, using intelligibility tests with
normal-hearing listeners. Results were compared with those ob-
tained under the equal-RMS constraint. The methods based on
spectral shaping and dynamic range compression yielded sig-
nificant intelligibility gains regardless of the constraint, while
for the method without dynamic range compression the intelli-
gibility gain was lower under the equal-loudness than under the
equal-RMS constraint.
Index Terms: near-end listening enhancement, equal-loudness
constraint, dynamic range compression

1. Introduction
The intelligibility of speech worsens in noisy environments
(e.g., train stations, airports, sports arenas) and this can pose
a serious communication barrier. Recent research efforts have
addressed this issue by exploring the effects of modifications of
the clean speech signals (before they are mixed with noise) with
the overall RMS power of the signal held constant [1, 2]. This
problem is known as near-end listening enhancement or speech
intelligibility enhancement (SINE) and the constraint is called
the equal-RMS (EQR) constraint. Typical solutions use modi-
fications that are either based on previous intelligibility studies
(e.g., simulating the differences between Lombard speech and
conversational speech or emphasis of the information-bearing
segments of speech) [3–7] or they optimize an objective mea-
sure that correlates well with measured intelligibility [8–11].
‘Inclusive’ algorithms that would work for both normal-hearing
and hearing-impaired listeners or in reverberant conditions are
becoming increasingly popular [12, 13].

Most previous evaluations of SINE algorithms have used
the EQR constraint. This approach is relatively simple and al-
lows an easy comparison between different algorithms. How-
ever, it has the disadvantage that it does not take into account the

auditory perception of listeners. Different processing applied to
the same speech signal under the EQR constraint may produce
markedly different loudness values for each of the modifica-
tions, as shown by [14]. Loudness is the perceptual attribute
of sounds in terms of which they can be ordered from quiet to
loud [15]. In other words, loudness is the subjective impres-
sion of the magnitude of sounds. Usually, the SINE modifi-
cations result in an increase in loudness, but, in practice, the
loudness should be kept within an acceptable range. In particu-
lar, it is necessary to avoid excessive loudness for listeners who
are close to one or more of the loudspeakers in a public address
system. Therefore, it may be more appropriate to evaluate SINE
algorithms using an equal-loudness (EQL) constraint, whereby
the loudness of the speech is the same before and after enhance-
ment processing. Here four state-of-the-art SINE algorithms
were evaluated under the EQL constraint, using normal-hearing
listeners. The results were compared with similar results ob-
tained using the EQR constraint. To the best of our knowledge,
this is the first work assessing the effectiveness of SINE algo-
rithms with the EQL constraint.

An EQL constraint may be also better suited to hearing-
impaired listeners than the EQR constraint. It is estimated that
10-15% of the total population worldwide suffers from some
form of hearing impairment, a percentage that is expected to in-
crease as the average age of the population increases. Loudness
recruitment is a side-effect frequently accompanying the loss of
hearing [16]. While sensitivity is reduced for low-level sounds,
high-level sounds may be perceived with normal loudness or
even with greater-than-normal loudness (hyperacusis), making
loudness control very important.

Modeling, measuring and controlling the loudness of
sounds has major applications in audio and speech synthesis,
broadcasting, hearing instruments and noise control. Mapping
sound intensity (physical magnitude) to loudness is a non-trivial
cross-disciplinary topic [17–22]. Equating loudness requires
both an accurate loudness predictor (model) and a procedure for
adjusting the signal level without introducing artifacts [23–28].
Here, we used the loudness model of Glasberg and Moore [22],
which has been shown to give accurate predictions of loudness
for unprocessed speech and for speech processed using SINE
algorithms [14].

The rest of the paper is organized as follows. Section 2
briefly describes the SINE algorithms to be evaluated using the
EQL constraint and summarizes the procedure used to equate
loudness, Section 3 presents the evaluation methodology and
the results, and Section 4 gives a comparison of the present re-
sults with previous results obtained using the EQR constraint.
Finally, conclusions are presented in Section 5.
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2. Methods
2.1. Intelligibility enhancement algorithms for evaluation

Four algorithms were selected for evaluation under the EQL
constraint. They were chosen based on their high intelligibil-
ity gains under the EQR constraint, as reported in earlier stud-
ies [1,2,29]. The first three were also jointly evaluated by Zorilă
and Stylianou [29], which facilitated a comparison of intelligi-
bility gains under the EQR and EQL constraints. All processing
was done using a 16-kHz sample rate and 16-bit resolution.

The first algorithm (SSDRC) was based on the work of Zo-
rilă et al. [4, 7] and used a two-stage energy reallocation strat-
egy. During the first stage (spectral shaping - SS), the speech-
to-noise ratio (SNR) at medium and high frequencies was in-
creased by transferring energy from below 500 Hz to higher fre-
quencies. This was implemented by flattening the spectral tilt,
sharpening the formants and boosting the mid range (1-4 kHz)
energy, the first two operations depending on the voicing nature
of the current frame. The second stage applied dynamic range
compression (DRC) to the output of the first stage, so as to am-
plify segments of speech that are more prone to noise masking
(fricatives, nasals, and stops), at the expense of reducing the
level of segments with higher energy (mostly vowels). As a re-
sult of the application of DRC, the overall variations of the time
envelope were reduced, as shown in Fig. 1.
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Figure 1: Example of speech before and after application of
DRC [4].

The second algorithm (tSER) was suggested by Takou et
al. [5] and consisted of a three-stage spectral energy transfer.
In one stage, the components below 400 Hz were isolated by
lowpass filtering and were passed on unprocessed for combina-
tion with the signals from the other stages. In a second stage,
the signal was pre-emphasized with a first-order finite impulse
response filter that flattened the spectral tilt. The third stage
took its input from the second stage and applied a spectral con-
trast enhancement algorithm resembling the two-tone suppres-
sion that occurs in the cochlea [30]. The outputs of these stages
were combined after weighting of their magnitudes. No further
energy reallocation over time was performed.

The third algorithm (fSERDRC) was based on a more com-
putationally efficient implementation of tSER (denoted fSER)
that was combined with the DRC stage of SSDRC [29]. It was
shown that SSDRC, tSER and fSERDRC yield similar intelligi-
bility enhancements under the EQR constraint.

The fourth algorithm (SDR) applied modifications derived
from an optimization criterion designed to recover the spectral
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Figure 2: Block diagram of the TVL model [22].

dynamics of speech [10]. The input speech was split into 14
Mel-frequency bands and the power in each band was altered
according to mapping functions learned from both speech and
noise statistics. The method was shown to considerably im-
prove the recognition rate of speech presented in various sta-
tionary noise maskers, outperforming a similar state-of-the-art
optimization-based reference system.

2.2. Loudness normalization of stimuli

The loudness model of Glasberg and Moore [22] for time-
varying sounds (TVL) was used to predict the loudness of the
unprocessed and processed speech stimuli (Fig. 2). Firstly, the
input signal was passed though a filter that simulates the trans-
fer through the outer and middle ear. Then a multi-resolution
spectral analysis was performed on the output, resembling the
processing that occurs in the cochlea, and this was used to calcu-
late the excitation pattern evoked by the sound at 1-ms intervals.
The excitation pattern simulates the spectral representation of a
sound in the cochlea [21]. Specific loudness patterns were cal-
culated by application of a compressive nonlinearity to the ex-
citation pattern [21]. The specific loudness is a kind of loudness
density. Instantaneous loudness (not available for conscious
perception) was computed by summing the specific loudness
values across frequency. The short-term loudness, which rep-
resents the loudness of a segment of a sound such as a word in
speech or a note in music, was calculated by temporal averaging
of the instantaneous loudness values, using a form of averag-
ing representing an automatic gain control, with fast attack and
slower release. The long-term loudness (LTL) represents the
overall loudness impression of a relatively long sample of the
sound (e.g. a sentence), and was calculated from the short-term
loudness using an averager with longer time constants. The LTL
was used for this work.

Note that all parameters of the model were fixed at stan-
dard values, except for the release time of the averager used to
calculate the LTL. The exact value of the release time had lit-
tle effect on the adjustments required to equate the LTL across
stimuli. Note also that the model does not take into account the
phases of the components, which have a small effect on loud-
ness [31, 32]. However, only one of the enhancement methods
used here (tSER) resulted in changes in component phases.

Equating the loudness of stimuli was done as described
in [14]. Entire sentences were iteratively rescaled in level un-
til the absolute differences of their peak LTL values were below
0.01 sones. This simple approach has the advantage of not intro-
ducing artifacts in the output signal, and was shown to perform
well. The TVL model with shorter release times for computing
the LTL was used here, as described in [14].

3. Evaluation & Results
The methodology for evaluating the intelligibility benefits of
the selected algorithms under the EQL constraint followed the
same general guidelines as those used for the Hurricane Chal-
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(b) Competing Speaker type of noise.

Figure 3: Percentage of correctly recognized keywords for the intelligibility assessment under the EQL constraint. The error bars show
Fisher’s least significant differences (FLSD).

lenge (HC) [1]. The speech signals consisted of the first 30 Har-
vard sets (300 sentences in total), while the noises were both
of stationary (speech-shaped noise - SSN) and non-stationary
nature (competing speaker - CS). The Harvard sentences were
spoken by a native British English male, and the competing
speaker was a woman reading news and Harvard-like sentences.
The SSN was generated by passing white noise through a 100-
th order finite-impulse filter whose frequency response matched
the long-term average spectrum of the CS.

A different approach from the one used for HC was em-
ployed to mix the speech and noise samples (Fig. 4). The noise
samples were normalized to have an RMS level of -27 dB re full
scale. Then, the level of the unprocessed speech was scaled to
give three specific SNRs for each noise type. Next, the scaled
speech was processed using the SINE algorithms described in
Section 2.1 and then equal processed signal was scaled to meet
the EQL constraint as described in Section 2.2. The starred
branch in Fig. 4 indicates that the target peak LTL value used
for loudness normalization came from the unprocessed speech
(also denoted as ‘plain’). Finally, the loudness-matched en-
hanced speech and noise signals were added together. The input
SNRs were 2 dB larger than the ones used for the HC, i.e. -7,
-2 and 3 dB and -19, -12, -5 dB for the SSN and CS maskers,
respectively. That was done because we expected a drop in the
physical SNR following the loudness equalization. The previ-
ous SNRs (for each noise type) were denoted as ‘severe’, ‘mod-
erate’ and ‘mild’, respectively.
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Figure 4: Diagram of method of scaling level to meet the equal-
loudness constraint.

Twenty subjects took part in the evaluation, all having nor-
mal audiograms for all audiometric frequencies from 0.25 to
8 kHz. The listening test was conducted in a sound-proof room
at the Department of Experimental Psychology, University of

Cambridge, UK. Stimuli were presented via Sennheiser HD580
headphones at an equivalent input level of 65 dB SPL. Each sen-
tence was presented no more than once and subjects were asked
to type what they heard. The test was self-paced, controlled
via a Matlab graphical interface, and took roughly one hour to
complete.

Fig. 3 shows the percentage of correctly recognized key-
words averaged across all subjects for each SNR, noise type
and processing condition. Repeated-measures analysis of vari-
ance (ANOVA) was performed on the arcsine-transformed
scores with factors processing condition (5), noise type (2) and
SNR (3). There were significant main effects of processing con-
dition F (4, 76) = 159.0, p < 0.0001, noise type F (1, 19) =
235.7, p < 0.0001 and SNR F (2, 38) = 807.8, p < 0.0001.
Only SSDRC and fSERDRC yielded significant higher scores
than for plain speech (p < 0.05) for both noise types. Intelligi-
bility gains were larger with the stationary masker than with the
fluctuating masker, and the intelligibility gains were greatest for
the lowest (severe) SNR. SDR yielded intelligibility gains with
the SSN but led to reduced intelligibility with the CS.

4. Discussion
The results showed significant intelligibility gains for speech
processed by either SSDRC or fSERDRC, but little or no
gain for tSER. Since it was previously established that fSER
and tSER yield similar recognition rates under the EQR con-
straint [29], the drop in performance of tSER under the EQL
constraint can be attributed to the lack of a dynamic range com-
pression stage. A more in-depth view of the effects of holding
the loudness constant can be obtained by plotting the average
SNR adjustments needed to obtain equal loudness (Fig. 5a).
The adjustment is relative to the EQR case. It can be seen
that, on average, the level of SSDRC samples was reduced by
roughly 0.5 dB, and was slightly increased for fSERDRC, ex-
plaining the similar intelligibility gains for the two, as shown
in Fig. 3, but also the slightly better performance for the latter
with the CS background. The level of tSER-processed speech
was decreased by more than 2.5 dB with the EQL constraint
(explaining the lower intelligibility scores), thus indicating a
much severe need to control the loudness of speech processed
by this system. SDR processing yielded significant intelligibil-
ity gains with the SSN, despite an average level reduction of
2 dB. However, SDR processing decreased intelligibility with
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(a) Mean SNR adjustment resulting from equating loud-
ness.
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Figure 5: Impact of applying the EQL constraint on the SNR and on the intelligibility gains obtained using the EQR constraint.

the CS. This result is not surprising since SDR was originally
designed for stationary maskers. The results for SDR process-
ing are consistent with other studies showing low performance
of optimization-based algorithms for speech presented in fluc-
tuating noise [1].

Although the average SNR adjustments in Fig. 5a may in-
dicate that there is no meaningful difference between the EQR
and EQL constraints when the processing chain includes DRC,
there are cases when the adjustments were larger. The box-and-
whisker chart of SNR corrections for EQL across the whole
evaluation set reveals such examples (Fig. 6); some sentences
required scaling by more than ± 4 dB.
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Figure 6: Box-and-whisker chart of SNR adjustments averaged
across all noise conditions and across all sentences. The lower
and upper whiskers show the minimum and maximum values of
the adjustments, the lower and upper box boundaries show the
first and third quantiles, and the thick lines show median values.

Figure 5b shows the relationship between the intelligibility
gains yielded under the two constraints for the first three algo-
rithms. EIC stands for equivalent intensity change, and is a met-
ric indicating how much the unprocessed (plain) speech would
have to be amplified (positive EIC) or attenuated (negative EIC)
to achieve the intelligibility scores of the SINE systems tested
here. EICs were used to rank the systems participating in the
HC [1].

The same logistic mappings of intelligibility and SNR as

described in [1] were used to compute EIC values for the re-
sults presented here. In Fig. 5b, the abscissa represents the EICs
data obtained using the EQR constraint [29], while the ordinate
shows the EIC change for a given type of processing result-
ing from application of the EQL constraint as opposed to the
EQR constraint. As expected, the resulting values for all noise
types and conditions correlated well with the SNR adjustments
shown in Fig. 5a. On average, the EIC for SSDRC dropped by
0.6 dB, the EIC for fSERDRC increased by 0.1 dB, and the EIC
for tSER dropped by 3 dB. No data obtained under the EQR
constraint were available to assess SDR in a similar way. Com-
paring the EIC difference for plain speech during the test here
and the one obtained with the EQR constraint, an average of
1.9 dB was obtained, which is reasonably close to the expected
2 dB value.

Overall, the benefits obtained using SINE processing with
DRC did not differ significantly under the EQL constraint and
the EQR constraint. However, significantly reduced intelligi-
bility gains (equivalent to an EIC of 3 dB) were obtained under
the EQL constraint with the algorithm that did not include DRC.
A further evaluation is planned to assess the effectiveness of the
SINE algorithms with hearing-impaired listeners under the EQL
constraint.

5. Conclusions
Four modern speech-in-noise near-end intelligibility enhance-
ment algorithms were evaluated by replacing the typical equal-
RMS (EQR) constraint with an equal-loudness (EQL) con-
straint. The latter can serve to prevent the algorithms from
leading to an excessive loudness for some listeners. The re-
sults showed that the intelligibility gains for the algorithms em-
ploying dynamic range compression (DRC) did not differ sig-
nificantly under the EQR and EQL constraints. However, the
performance of an algorithm without DRC was worse under the
EQL than under the EQR constraint by an amount equivalent to
a change in signal-to-noise ratio of more than 3 dB.
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