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Abstract
Recent studies have shown that DNN-based speech synthesis
can produce more natural synthesized speech than the con-
ventional HMM-based speech synthesis. However, an open
problem remains as to whether the synthesized speech qual-
ity can be improved by utilizing a multi-speaker speech cor-
pus. To address this problem, this paper proposes DNN-based
speech synthesis using speaker codes as a simple method to im-
prove the performance of the conventional speaker dependent
DNN-based method. In order to model speaker variation in the
DNN, the augmented feature (speaker codes) is fed to the hid-
den layer(s) of the conventional DNN. The proposed method
trains connection weights of the whole DNN using a multi-
speaker speech corpus. When synthesizing a speech parame-
ter sequence, a target speaker is chosen from the corpus and
the speaker code corresponding to the selected target speaker
is fed to the DNN to generate the speaker’s voice. We investi-
gated the relationship between the prediction performance and
architecture of the DNNs by changing the input hidden layer for
speaker codes. Experimental results showed that the proposed
model outperformed the conventional speaker-dependent DNN
when the model architecture was set at optimal for the amount
of training data of the selected target speaker.
Index Terms: Speech synthesis, acoustic model, deep neural
network, speaker codes

1. Introduction
Recent studies have shown that deep neural network (DNN)-
based speech synthesis [1, 2, 3] can produce more natural syn-
thesized speech than the conventional hidden Markov model
(HMM)-based speech synthesis. However, DNN-based speech
synthesis requires a considerable amount of speech data uttered
by the target speaker to obtain sufficient performance. The
problem then becomes the high cost to generate speech from
various speakers from DNN because we need a considerable
amount of speech data from all the speakers the system uses,
and annotations of phonetic and prosodic contextual informa-
tion on them.

As for the field of HMM-based speech synthesis, many
techniques have succeeded in generating speech from a smaller
amount of the target speaker’s data. A powerful method is
an average-voice-based speech synthesis technique with model
adaptation [4]. In this technique, average voice models are cre-
ated from several speakers’ speech data and are adapted with a
small amount of speech data from a target speaker using model
adaptation algorithms such as CSMAPLR [5]. Another success-
ful method is based on cluster adaptive training (CAT) [6]. This
model has multiple compact decision trees that are interpolated
to produce a huge variety of possible contexts, and is trained us-
ing a multi-speaker speech corpus to improve the speech qual-
ity.

Motivated in a way similar to these previous studies in
HMM-based speech synthesis, this work aims to improve the
synthetic speech quality from a DNN by using a multi-speaker
speech corpus. In speech recognition, one technique to model
speaker variability in DNNs is to feed augmented speaker spe-
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Figure 1: The architecture of DNNs. (left: the conventional
model, middle: the proposed model using a single hidden layer,
right: the proposed model using all hidden layers)

cific features like i-vectors [7] or speaker codes [8, 9] to the
network in order to incorporate speaker-level information to the
DNNs. This work is based on the assumption that such features
can also be introduced to DNNs for speech synthesis.

In a recent study [10] an experimental analysis was con-
ducted using i-vector based feature augmentation. Although
the evaluation in [10] focused on the speaker adaptation perfor-
mance, the feature augmentation approach is also expected to
improve the speech quality for each speaker used in the training
process. Therefore, in the field of DNN-based speech synthe-
sis, it still has not been revealed whether combining multiple
speakers’ speech corpora provides improved speech quality for
the speakers in the corpora. Mainly to focus on this problem,
this paper proposes to use augmented features based on speaker
codes, which is a relatively simple method and has not yet been
investigated precisely in the DNN-based speech synthesis field.
Besides this main focus, the performance of the proposed model
as an adaptation model to an unseen target speaker was also
evaluated in a preliminary experiment.

2. Model Description
The baseline model is a DNN acoustic model similar to the one
described in [1]. The baseline model is illustrated in the left
side of Fig. 1. The DNN is used as a mapping function from the
linguistic feature vectors to acoustic feature vectors. First, the
input text is converted to the linguistic feature vector. The in-
put features include binary answers to questions about linguistic
contexts and numeric values. Then the linguistic feature vector
is mapped to the output feature by forward propagation of DNN.
The output features include spectral and excitation parameters
and their time derivatives. The baseline model is trained using
a single-speaker speech corpus.

As shown in the right side of Fig.1, in the proposed method,
a speaker code S is fed to certain hidden layer(s) through an ad-
ditional set of connection weights B. Here the speaker code
S represents the speaker information. These additional parame-
ters of S and B in the proposed model are expected to represent
the speaker characteristics in speech signals. The speaker codes
can be fed to a certain hidden layer or all hidden layers as illus-
trated in the middle and the right side of Fig. 1, respectively. In
this paper, the speaker code S = [s1, · · · , sK ] for speaker m is
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set to the following fixed 1-of-K form for simplicity:

sk =

{
1 (k = m)
0 (k ̸= m)

(1)

where K is the dimension of S and equal to the number of
speakers in the training data. The proposed method trains con-
nection weights of the whole DNN using a multi-speaker speech
corpus. When synthesizing a speech parameter sequence, a tar-
get speaker is chosen from the corpus and the speaker code cor-
responding to the selected target speaker is fed to the DNN
to generate the speaker’s voice. The proposed model is ex-
pected to generate more stable and natural speech because the
networks from the linguistic feature to the acoustic feature are
trained with a greater variety of contextual information by us-
ing a multi-speaker speech corpus. Furthermore, the speech
from the proposed model is expected to have high similarity
to the target speaker because the additional low dimensional
networks B are expected to be trained effectively by using a
smaller amount of speech data for each speaker.

3. Experiments
3.1. Experimental setup
In the experiments, we used speech data in Japanese from 35
speakers (17 male and 18 female speakers). Two speakers, one
male and one female from the speech database, were used as
target speakers. The training corpus includes 7260 utterances
(about 1340 minutes) from 33 speakers apart from the two target
speakers. We considered two training conditions: 5 utterances
(about 1.2 minutes) and 300 utterances (about 63 minutes) for
the training corpus for each target speaker. Twenty utterances
were used as a testing set for each target speaker. The sampling
rate of the corpus was 22.05 kHz. The STRAIGHT vocoder
[11] was employed to extract 40 dimensional mel-cepstral co-
efficients, 5 band aperiodicities, and F0 in log-scale at 5 msec
steps. We compared the performance of the following 4 acous-
tic models.

• SD: The speaker dependent DNN [1].
• HMM: The average voice model with adaptation.
• SPKCODE: The proposed model using speaker codes.
• SPKCODE ADAPT: The proposed model with adapta-

tion (The details are described in sec. 4.).
Prior to the following experiment, we compared the perfor-
mance of the HMM-based method in two experimental condi-
tions: the utterances by the target speaker were used (1) only
in the adaptation process and (2) both in the average-voice-
model training and the adaptation process. In the following ex-
periments, we present the results of (2) because they showed
slightly better performance than the results of (1).

The input vector of a DNN contained 506 dimensional
linguistic features. Each observation vector consisted of 40
Mel-cepstral coefficients, log F0, 5 band aperiodicities, their
delta and delta-delta features, and a voiced/unvoiced binary
value. The input numeric features were normalized to the range
of [0.01, 0.99], and the output features were normalized by
speaker-dependent mean and variance. The DNN systems had
5 hidden layers and each hidden layer had 1024 units. A sig-
moid function was used in the hidden layers followed by a lin-
ear activation at the output layer. For the training procedure, the
weights of the DNN were initialized randomly, then optimized
to minimize the mean squared error between the output features
of the training data and predicted values, using the Adam [12]-
based back-propagation algorithm. The parameters for Adam
algorithm were set as α = 0.0001, β1 = 0.9, β2 = 0.999, ϵ =
1e− 8. Five percent of the utterances of the whole training data
were used as a development set. The SD models were trained
using only the target speaker utterances in the training corpus.

For the HMM, we used a five-state left-to-right hidden
semi-Markov model with no skip topology. Each observation

vector consisted of 138 features (40 Mel-cepstral coefficients,
log F0, 5 band aperiodicities, and their delta and delta-delta fea-
tures). The output distribution in each state was modeled as a
single Gaussian density function, and the covariance matrices
were assumed to be diagonal. We used the combined technique
of CSMAPLR and MAP adaptation as the speaker adaptation
algorithm [5]. The model size was determined automatically by
the minimum description length (MDL) criterion [13], where
the control parameter of the model size was set to α = 1.0.

For all of the three methods evaluated in these experiments,
segmentations (phoneme durations) from natural speech were
used instead of predicting duration. We applied MLPG [14] to
the output features for all of the three methods. For DNN-based
methods, we used pre-computed variances from the training
data for MLPG. We did not apply spectral enhancement tech-
niques such as global variance [15] to reduce factors considered
in the experiments.

3.2. Objective evaluation
We first investigated the relationship between the prediction
performance and the architecture, i.e., the input hidden layer(s)
for speaker codes (the 1st, 2nd, 3rd, 4th, 5th hidden layer and
all hidden layers). Then, we compared the performance of the
proposed method with that of the conventional methods.

3.2.1. Evaluation using 5 target speaker utterances

Figure 2 presents the mel-cepstral distortions (MCDs) and RM-
SEs of log F0 when using 5 target speaker utterances. Among
the investigated model architectures, the models using all hid-
den layers for speaker codes gave lower MCDs and higher F0
RMSEs than most models using a single hidden layer. Among
the models using a single layer for speaker codes, the models us-
ing the 2nd, 3rd or 4th hidden layer tended to give lower MCDs
and F0 RMSEs than those obtained using the 1st or 5th hidden
layer. One reason for this is that the connection weights to the
first layer are difficult to train because of vanishing gradients.
The other reason is that the model using the last layer could
not represent the speaker characteristics precisely because aug-
mented feature connections to the last hidden layer represent
global transformation in the acoustic feature space, which can
be partially substituted by speaker-wise feature space normal-
ization. We decided that the models using the 4th layer were
at optimal among the models trained using 5 target speaker ut-
terances because both of the MCDs and F0 RMSEs are consis-
tently low for each target speaker.

We then compared the performance of SPKCODE and
HMM. We can see that the MCDs of SPKCODE are lower than
HMM when the model architecture was at optimal. This is be-
cause the DNN-based methods has an advantage in modeling
complex context dependencies over the tree-clustered HMM-
based methods [1]. As for F0 RMSEs, the relation between
SPKCODE and HMM differed for the two target speakers and
showed no consistent tendency.

Figure 3 compares the performance between SPKCODE
and SDs. The plots in this figure show the performance of SDs
trained using different numbers of training data elements (10,
20, 50, 100, 200 or 300 utterances). The solid lines show the
performance of SPKCODEs trained using 5 target speaker utter-
ances. We can see that the SPKCODE gives MCDs equivalent
to SDs trained using 50∼100 utterances, and gives F0 RMSEs
equivalent to SDs trained using 100∼300 utterances. These re-
sults confirmed the prediction performance improvement of the
proposed method. The proposed method showed greater perfor-
mance improvement in F0 prediction than in mel-cepstral pre-
diction. This is because accurate F0 prediction needs greater
variety in contexts in training data than mel-cepstra prediction
in order to model its complex dependency on prosodic infor-
mation such as accent type and mora positions. The proposed
model has an advantage in F0 prediction performance improve-
ment because the model can be trained with a greater variety in
contexts by using a multi-speaker speech corpus.
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Figure 2: The objective evaluation results (The number of target
speaker utterances: 5).
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Figure 3: Performance of the proposed model and the conven-
tional speaker dependent model (The number of target speaker
utterances: 5) .

3.2.2. Evaluation using 300 target speaker utterances

Figure 4 presents the mel-cepstral distortions and RMSEs of log
F0 when using 300 target speaker utterances. As with the eval-
uation using 5 target speaker utterances, MCDs by the model
using all hidden layers were lower than most models using a
single hidden layer while the relation between F0 RMSEs and
the architecture differed for the target speakers. From these re-
sults, we decided that the models using all hidden layers were
at optimal among models trained using 300 target speaker utter-
ances because the MCDs and F0 RMSEs were consistently low
for each of the target speakers.

We then compared the performance of SPKCODE, SD, and
HMM. We can see the relations of SPKCODE < SD <
HMM for MCDs and HMM < SPKCODE < SD for F0
RMSEs. For all experimental conditions, SPKCODE outper-
formed SD. These results confirmed the prediction performance
improvement of the proposed method using a multi-speaker
speech corpus. When SPKCODE is compared with HMM, it is
found that MCDs of SPKCODE are lower than those for HMM
while F0 RMSEs of SPKCODE are higher. The advantage of
DNN over HMM was confirmed for both conditions using 5 and
300 target speaker utterances. We can see from Figs. 2 and 4
that F0 RMSEs of SPKCODE were equivalent to or higher than
HMM when using either 5 or 300 target speaker utterances.
These results revealed that the proposed method needs more ac-
curate F0 prediction performance.
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Figure 4: The objective evaluation results (The number of target
speaker utterances: 300).

3.3. Subjective evaluation
We conducted subjective evaluations with respect to naturalness
and similarity of the synthesized speech to confirm the effec-
tiveness of the proposed method. We used the optimal archi-
tectures for the proposed method as discussed in the last sec-
tion; the model using the 4th hidden layer when using 5 target
speaker utterances and the model using all hidden layers when
using 300 target speaker utterances. The number of listeners
was 24 for a naturalness test and 22 for a similarity test. We
conducted five-point MOS and DMOS tests. The scale for the
MOS test was 5 for “very natural” and 1 for “very unnatural”.
The scale for the DMOS test was 5 for “very similar” and 1 for
“very dissimilar”.

Figures 5 and 6 show the naturalness and similarity scores
obtained in the subjective evaluations with confidence intervals
of 95%. We can see the relation of HMM <SPKCODE for
both naturalness and similarity scores. Furthermore, the scores
of SPKCODE using 5 target speaker utterances were equivalent
to those of SD using 300 target speaker utterances. We can also
see the relation of SD < SPKCODE for both naturalness and
similarity when using 300 target speakers utterances. These
results confirmed that the proposed method can improve the
synthetic speech quality by using a multi-speaker speech cor-
pus in DNN-based speech synthesis. On the other hand, there
were no significant differences between HMM and SPKCODE
when using 300 target speaker utterances. The objective eval-
uation results suggest the need for further development of the
proposed method for more accurate F0 prediction in order to
give better performance than the HMM-based method. The de-
graded F0 prediction performance compared to HMMs has been
already reported for the DNN architecture used in this experi-
ment [1]. To address this problem, the recent research [16] has
shown that different model architectures give F0 prediction per-
formance improvement. Our future work will include evaluat-
ing F0 prediction by incorporating speaker codes into the model
architecture in [16]

4. Preliminary study on speaker adaptation
4.1. Motivation and method
Although the experimental results in the last section confirmed
the effectiveness of the proposed method, high computational
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Figure 5: Naturalness and similarity test results with their 95%
confidence interval. (The number of target speaker utterances:
5)
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Figure 6: Naturalness and similarity test results with their 95%
confidence interval. (The number of target speaker utterances:
300)

cost will be needed when we want to generate speech from a
new target speaker. This is because the whole model needs to
be retrained using a corpus including the new speaker’s utter-
ances. It is considered that model adaptation by reestimating a
subset of model parameters using the target speaker utterances
can address this problem. In addition to the previous researches
of speaker adaptation for speech synthesis [10, 17, 18, 19], it is
considered that the speaker code based DNN can also be used
as a speaker adaptation method, since this approach has been
shown to be effective in speech recognition [8, 9]. This section
reports a preliminary study we conducted on speaker adaptation
using speaker codes.

In this study, the DNN is adapted in the following pro-
cedure. First, the connection weights of the whole DNN are
trained using a multi-speaker speech corpus. The speaker code
S is set in a form similar to that given in sec. 2, but this time S
is appended by an additional dimension to have K + 1 dimen-
sions in total. This additional dimension is used to represent
an unseen target speaker information, and always set to 0 in
the training procedure. Second, the model is adapted to a new
target speaker using only the target speaker utterances as adap-
tation data. This time the additional dimension of S is set to
1 and other dimensions to 0, and only the connection weights
B are reestimated to minimize the distance between the output
features of the adaptation data and predicted values. When syn-
thesizing, the speaker code S whose additional dimension is set
to 1 is used.

This adaptation procedure is different from those in [8, 9];
those references estimate both S and B for training and rees-
timate S for adaptation, while the procedure in this study es-
timates and reestimates only B and uses a fixed S for both
training and adaptation. Those references are for speaker adap-
tation for speech recognition and mainly focus on fast and ro-
bust adaptation with a limited amount of adaptation data. On
the other hand, for speech synthesis, it is needed to model the
speaker characteristics precisely to generate the target speaker’s
speech. The procedure in this study is expected to be flexible
and more appropriate for speech synthesis, because it reesti-

mates B whose dimension is generally larger than S for adap-
tation. From these expectations, as the first step of performance
evaluation of speaker code based adaptation for speech synthe-
sis, this study chose to conduct preliminary experiment in the
procedure to reestimate B.

4.2. Experimental results
In the following experiments, the target speaker’s utterances
were excluded from the training corpus and were used as adap-
tation data. The optimization parameters for adaptation pro-
cedure were set to the same values as the training procedure in
sec. 3.1. The number of the development set was 1 for 5 adapta-
tion utterances and 15 for 300 adaptation utterances. The other
experimental conditions were set in a way similar to sec. 3.1.
In order to make it reasonable to compare the scores with ones
in sec. 3.3, the subjective evaluation was conducted simultane-
ously with ones in sec. 3.3 to eliminate the perceptual bias from
the results.

The subjective evaluation results for SPKCODE ADAPT
are shown in Figs. 5 and 6. Although the scores of SP-
KCODE ADAPT were slightly lower than SPKCODE under
each condition, they were higher than those of HMM when us-
ing 5 target speaker utterances and comparable with HMM and
higher than SD when using 300 target speaker utterances. These
results confirmed that the adaptation based on speaker codes
generates speech whose quality is comparable with or higher
than conventional speaker dependent DNN and speaker adapted
HMM.

We then analyzed the performance of SPKCODE ADAPT
from the objective evaluation results in Figs. 2 and 4. When
using 300 target speaker utterances, the mel-cepstral predic-
tion performance of SPKCODE ADAPT was degraded greater
from that of SPKCODE than the other experimental conditions.
In addition, the prediction performance was even worse than
those of SDs. From these results, there is concern that the
adaptation models in this study could not represent the precise
speaker characteristics by effectively using the large amount of
adaptation data. Although this study chose to conduct adap-
tation with more free parameters than ones in [8, 9], the ob-
jective evaluation results for MCDs rather suggested that more
flexible adaptation models were needed when given a large
amount of adaptation data. To solve this problem, one promis-
ing approach would be a more elaborate speaker code based
adaptation method whose number of parameters for adaptation
can change concerning the amount of adaptation data, just as
CSMAPLR [4] in HMM-based adaptation method.

5. Conclusion
In this paper, we proposed a DNN-based speech synthesis
method using speaker codes to improve speech quality by using
a multi-speaker speech corpus. Experimental results showed
that the optimal architecture of the proposed model depends on
the amount of target speaker utterances in the training data. The
objective and subjective evaluation results showed that the pro-
posed model can produce more natural speech than the conven-
tional speaker dependent method. The experimental results also
suggested that the proposed model still has room for F0 pre-
diction performance improvement. Future works will include
evaluating performance when speaker codes are incorporated
into the model architecture in [16] to investigate this point. We
then conducted a preliminary study to use a speaker code based
DNN as a speaker adaptation model. The experimental results
showed that the adaptation using speaker codes can generate
speech with quality comparable to or better than the conven-
tional methods, while it suggested the need for more elaborate
adaptation technique which can change the number of parame-
ters for adaptation concerning the amount of adaptation data.
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