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Abstract
This paper presents a novel objective evaluation technique for
statistical parametric speech synthesis. One of its novel features
is that it focuses on the association between dimensions within
the spectral features. We first use a maximal information co-
efficient to analyze the relationship between subjective scores
and associations of spectral features obtained from natural and
various types of synthesized speech. The analysis results indi-
cate that the scores improve as the association becomes weaker.
We then describe the proposed objective evaluation technique,
which uses a voice conversion method to detect the associations
within spectral features. We perform subjective and objective
experiments to investigate the relationship between subjective
scores and objective scores. The proposed objective scores are
compared to the mel-cepstral distortion. The results indicate
that our objective scores achieve dramatically higher correlation
to subjective scores than the mel-cepstral distortion.

Index Terms: Statistical parametric speech synthesis, objective
evaluation, spectral features, maximal information coefficient

1. Introduction
Objective evaluation of synthesized speech is one of the most
important issues in the field of statistical parametric speech syn-
thesis (SPSS) [1]. To evaluate synthesized speech quality, sub-
jective evaluations are generally used. However, since subjec-
tive evaluations entail high cost, objective evaluations are also
used widely to evaluate synthesized speech. Therefore, iden-
tifying an objective evaluation index that is highly correlated
with subjective scores leads to efficient research on SPSS. If
such an evaluation index could be defined, it could also be used
as objective functions in SPSS. The objective evaluation index
that has generally been used is parameter generation errors be-
tween natural speech and synthesized speech, e.g., mel-cepstral
distortion and RMS errors of F0 and phoneme duration.

Recently, two main approaches have been used in order to
improve synthesized speech quality. The first is to introduce
a sophisticated machine learning technique for reducing the
parameter generation errors between natural and synthesized
speech. Techniques introduced for this purpose include the use
of Gaussian process regression [2], deep neural networks [3],
and deep recurrent neural networks [4]. The other approach is
the use of speech parameter generation methods that take into
account differences between the properties of natural speech
and synthesized speech, such as global variance (GV) [5], local
variance (LV) [6], and modulation spectrum (MS) [7]. Although
these approaches effectively improve synthesized speech qual-
ity, the conventional objective evaluation index, i.e., parameter
generation error, cannot necessarily be associated with the sub-
jective scores obtained from them. This is because it is gen-

erally known that the parameter generation algorithms that take
GV into account increase not only subjective scores but the mel-
cepstral distortion. In this study, our aim is to identify a novel
objective evaluation index that could be associated with the sub-
jective scores obtained from these methods.

The key idea of our technique is to focus on “association”
between dimensions within spectral features. In general, for
natural speech, none of these associations exist since the di-
mensions of spectral features are mutually independent. On the
other hand, in SPSS, spectral features are generated from sta-
tistical models such as HMM, which consist of a finite number
of model parameters. Therefore, there would be certain associ-
ations between dimensions within the spectral features of syn-
thesized speech. Although the analysis of degradation factors
in HMM-based speech synthesis [8] implied that the association
between dimensions within spectral features is one of the degra-
dation factors, the relationship between the association and the
subjective score was not clear because no quantitative analysis
regarding the association was done.

In this paper, we first quantitatively analyze the relation-
ship with the subjective score and the association between di-
mensions within spectral features. We then describe our objec-
tive evaluation method that takes into account the difference be-
tween the association of synthesized speech and that of natural
speech by detecting the association from spectral parameter se-
quences. To detect the association between dimensions within
spectral features, we utilized a voice conversion technique. In
the proposed technique, we first divide each of the training spec-
tral features into two spectral features. Then, we train voice
conversion models to convert the divided spectral features into
each other. These models can capture the association between
dimensions. When the evaluation spectral features are obtained,
the spectral features are converted using the trained voice con-
version models. Finally, we obtained the estimation error as the
evaluation index by calculating the spectral distance between
the converted evaluation spectral features and the input evalua-
tion spectral features.

2. Evaluation dataset
2.1. Speech data

We used speech data uttered by Japanese professional narra-
tors, one male and one female. The male speaker uttered 779
sentences and the female speaker uttered 612 sentences. The
sampling frequency of the speech was 22.05 kHz and the quan-
tization bit rate was 16 bits. All speech samples were manually
labeled with the phoneme segmentations and the accentual in-
formation.

For comparison with natural speech, we also used syn-
thesized speech generated from four types of speech synthe-
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Table 1: MOS scores obtained from the subjective evaluation.
natural HMM HMM

speaker speech HMM (GV) (GV+MS) NN

male 4.45 1.99 2.77 2.77 2.84

female 4.31 1.78 2.86 2.78 3.10

sis techniques, i.e., HMM-based speech synthesis [9], HMM-
based speech synthesis taking global variance into account [5],
HMM-based speech synthesis taking global variance and mod-
ulation spectrum into account [7], and neural network (NN)-
based speech synthesis [3]. The training data comprised 679 of
the 779 sentences uttered by the male speaker and 512 of the
612 sentences uttered by the female speaker. For the HMM-
based speech synthesis, we used a five-state left-to-right hidden
semi-Markov model with no skip topology. The output distri-
bution in each state was a single Gaussian density function, and
the covariance matrices were assumed to be diagonal. The con-
trol parameter of the model size was set to α = 1. For the
NN-based speech synthesis, the linguistic features were con-
verted into 300 dimensional vectors for each frame. We set the
number of hidden layers at 3 and the number of units per layer
at 256. When synthesizing speech parameters by using the NN,
the output parameters were modified by using global variance-
based post filter [10]. We used STRAIGHT analysis [11] for
speech feature extraction. The analysis frame shift was 5 ms.
The spectral envelope was converted to mel-cepstral coefficients
using a recursion formula. The aperiodic feature was also con-
verted to average values for five frequency sub-bands. As a re-
sult, the feature vector was found to consist of 40 mel-cepstral
coefficients including the 0th coefficient, log F0, and five-band
aperiodic features with delta and delta-delta coefficients.

2.2. Subjective evaluation

We also conducted a subjective evaluation test with respect to
the naturalness of the natural and synthesized speech. For the
test, we used 20 sentences for each speaker. To exclude the
effects of the prosodic and excitation features (i.e., F0, aperi-
odic components, phoneme durations), we used these features
extracted from the natural speech. Each subject evaluated each
speech sample twice and rated their naturalness on a point scale
ranging from 5 (very natural) to 1 (very unnatural). Table 1
shows the MOS scores obtained for 22 test subjects.

3. Association analysis of each dimension of
spectral features

We first analyzed the association between dimensions within
spectral features between natural and synthesized speech. How-
ever, since the association between dimensions within spec-
tral features is changed by various factors such as phoneme
context, it would be difficult to analyze the association using
all the speech data. To avoid the problem, we only used the
mel-cepstral coefficients having the same triphone /K-A+cl/ (17
speech segments, 312 frames) extracted from all the speech data
obtained from the male speaker.

3.1. Distribution of spectral features

Figure 1 shows distributions between the 5th and 13th mel-
cepstral coefficients. For the distribution of HMM (Fig. 1 (b)),
there is obviously some kind of association. On the other hand,
for natural speech (Fig. 1 (a)), there seems to be no such associ-
ation. In comparing HMM, HMM (GV), HMM (GV+MS), and
NN, we can see that the distributions of the latter three speech
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Figure 1: Distributions between 5th and 13th mel-cepstral coef-
ficients.

instances come slightly closer to those of natural speech. From
these results, it should be considered that the synthesized speech
with the distribution similar to that of natural speech will pro-
duce higher subjective scores.

3.2. Association analysis using MIC

For quantitatively analyzing the association between the two
variables, the correlation coefficient has been used. However,
this coefficient would not be suitable for the association anal-
ysis between each dimension of spectral features. This is be-
cause it cannot detect nonlinear association such as Fig. 1. To
solve this problem, we used a maximal information coefficient
(MIC) [12]. The MIC makes it possible to detect nonlinear as-
sociation that cannot be detected by using the correlation coef-
ficient. Additionally, the MIC has a property similar to that of
the correlation coefficient. That is, the MIC value ranges from
0 to 1, and the two variables with a strong association have a
value closer to 1.

Figure 1 shows the MIC value and correlation coefficient
for each distribution. A comparison with the correlation coeffi-
cients shows there are no associations with the subjective scores
and the correlation coefficients. On the other hand, for the MIC
values, speech with a lower MIC value has a higher subjec-
tive score. These results indicate that MIC makes it possible
to capture the association. To analyze the differences in asso-
ciations by the dimension of mel-cepstral coefficients, we also
calculated MIC values between dimensions within mel-cepstral
coefficients. Figure 2 lists the obtained MIC values for each
speech. We can see that speech with a lower MIC value has
a higher subjective score regardless of the dimensions of mel-
cepstral coefficients. Interestingly, it can be seen that a param-
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Figure 2: MIC values between dimensions of mel-cepstral coefficient.

eter generation algorithm taking GV (or MS) into account de-
creases the MIC values. This implies that parameter generation
methods that take GV (or MS) into account would be effective
not only in compensating for GV (or MS) but also in compen-
sating for the association between dimensions within spectral
features. Moreover, the NN values are closest to those of nat-
ural speech. Although Fig. 2 shows only the MIC values of
the triphone /K-A+cl/ uttered by the male speaker, similar ten-
dencies were also obtained from other triphones of the female
speaker. These obtained results indicate that the association be-
tween dimensions within spectral features would be effective
for an objective evaluation.

4. Proposed technique
In the previous section, we confirmed that the subjective score
improves with weaker association of spectral features. How-
ever, since the association will change according to various fac-
tors such as phoneme contexts, we cannot apply the MIC values
directly for the objective evaluation. Therefore, we propose an
objective evaluation index by using the voice conversion tech-
nique to detect the association.

4.1. Overview of proposed technique

A block diagram of the proposed method is shown in Fig. 3.
The overall process is summarized below.

Training part:
Step 1 Divide the training spectral features into two spectral

features on the basis of the dimensions of the training
spectral features.

Step 2 Train conversion models for converting the divided
spectral features into each other.

Evaluation part:
Step 3 Divide the evaluation spectral features into the two

spectral features in the same manner as in Step 1.

Conversion model training

Training Part

Spectral feature divisionTraining spectral 
features

Divided spectral 
features #1

Divided spectral 
features #2

Evaluation Part

evaluation
spectral
feature

Spectral 
feature 
division

Spectral distance calculation

Divided
spectral

features #1

Conversion 
model (#1→#2)

Conversion 
model (#2→#1)

Divided
spectral

features #2
Conversion
(#2→#1)

Conversion
(#1→#2)

Converted
spectral

features #2

Converted 
spectral

features #1

Figure 3: Block diagram of the proposed technique.

Step 4 Convert the divided evaluation spectral features into
each other using the trained conversion models obtained
from Step 2.

Step 5 Obtain the objective evaluation index by calculating
the spectral distance between the converted evaluation
spectral features and the evaluation spectral features.

In the proposed technique, we convert the divided spectral
features into each other to detect the association within spec-
tral features. If the obtained spectral distance between the con-
verted and the evaluation spectral features is small, the associa-
tion between dimensions within the spectral features would be
strong because the divided spectral features can be converted
accurately from other dimensions of spectral features. On the
other hand, if the obtained spectral distance is large, the asso-
ciation between dimensions within spectral features would be
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Table 2: Objective evaluation results.
male female

MOS MCD [dB] Proposed [dB] MOS MCD [dB] Proposed [dB]

natural speech 4.45 − 4.18 4.31 − 4.79

HMM 1.99 4.35 0.52 1.78 4.95 0.40

HMM (GV) 2.77 4.74 1.25 2.86 5.47 1.31

HMM (GV+MS) 2.77 4.77 1.26 2.78 5.43 1.30

NN 2.84 4.35 1.41 3.10 4.83 1.51

weak. Details of each component, i.e., spectral features divi-
sion, and spectral features conversion, are described as follows.

4.2. Division of spectral features

Let X be the spectral features with T frames and D dimen-
sions. We divide the spectral features X into the two spectral
features (X1, X2) on the basis of the dimensions of the spec-
tral features. In this paper, we set odd-order mel-cepstral coef-
ficients as X1, and even-order mel-cepstral coefficients as X2

on the basis of preliminary experiment results.

4.3. Conversion of spectral features

With our technique, we convert the divided spectral features
into each other, i.e., conversion from X1 to X2, and con-
version from X2 to X1. This problem can be considered as
similar to that occurring with the voice conversion. Therefore,
as the spectral conversion model, we can use voice conversion
techniques that have been proposed such as vector quantization
(VQ) [13], Gaussian mixture models (GMMs) [14], artificial
neural networks (ANNs) [15], and deep bidirectional long short
term memory recurrent neural networks (BLSTM-RNNs) [16].

In the evaluation part, the converted divided spectral fea-

tures (X̂1, X̂2) are obtained by converting from the divided
evaluation spectral features using the trained conversion mod-
els. Finally, as the objective evaluation index, we obtain
the spectral distance between the evaluation spectral features

X and the converted evaluation spectral features X̂ . Here,

X̂ is obtained by combining the converted spectral features

(X̂1, X̂2). As the spectral distance, we can use mel-cepstral
distortion, RMS error, and so on.

5. Experiments
5.1. Experimental conditions

We used the same speech data and the MOS regarding natural-
ness described in Sect. 2. As the spectral conversion model,
we adopted the NN [15] to take the sequentiality of the mel-
cepstral coefficients into account. The same sentences used for
training of the TTS models were used as the training data of
NN for the spectral feature conversion. For training of the NN
for synthesized speech, the closed spectral features generated
from each TTS model were used. Twenty sentences not used
for the training were used for the evaluation. We set the num-
ber of hidden layers at 2 and the number of units per layer at
128. As the input vector, we used 11 consecutive (center, 5 pre-
vious, and 5 succeeding) frames to take the sequentiality of the
mel-cepstral coefficients into account. The delta and delta-delta
coefficients were not used. Mel-cepstral distortion was used as
the spectral distance of the proposed technique. To compare
our proposed objective scores with the conventional objective
scores, we also calculated the mel-cepstral distortion between
the mel-cepstral coefficients of natural speech and those of each
synthesized speech.

5.2. Experimental results

Table 2 shows MOS, mel-cepstral distortions, and the proposed
objective evaluation indexes for each speaker. We can see that
the proposed evaluation indexes obtained from HMM are small-
est, and those of natural speech are largest. This indicates that
speech with a higher proposed evaluation index has a higher
subjective score.. Furthermore, these evaluation indexes are
highly correlated with subjective scores. The obtained corre-
lation coefficients are 0.988 (the male speaker) and 0.944 (the
female speaker) respectively. In contrast, it can be seen that
subjective scores are not necessarily associated with the mel-
cepstral distortion, especially those of HMM (GV) and HMM
(GV+MS). These obtained results indicate that our objective
evaluation index is more effective than the mel-cepstral distor-
tion. In particular, our evaluation index can evaluate techniques
having different tendencies of mel-cepstral distortion, such as
HMM (GV), HMM (GV+MS), and NN.

5.3. Relation to prior work

Another technique that has been proposed is the objective eval-
uation method based on Kullback-Leibler (KL) divergence be-
tween GMMs of natural and synthesized speech [17]. With this
method, however, since spectral features of natural speech are
modeled by GMMs, the association between dimensions within
spectral features similar to those of synthesized speech would
be lost. Therefore, scores obtained from the KL divergence-
based method would not be correlated with subjective scores
obtained from HMM (GV) and HMM (GV+MS) as well as the
mel-cepstral distortion. The perceptual evaluation of speech
quality (PESQ) [18] are also highly correlated with subjec-
tive scores [19, 20]. With this method, however, the reference
speech is required in order to estimate subjective scores. On the
other hand, the reference speech is not required in our proposed
method, although our proposed method has to train the voice
conversion model.

6. Conclusions
In this paper, we presented a novel objective evaluation tech-
nique using the association between dimensions within the
spectral features for statistical parametric speech synthesis. We
analyzed the association between dimensions within the spec-
tral features using a maximal information coefficient (MIC).
The analysis results indicated that speech with higher natural-
ness has weaker associations. Then we described an objective
evaluation technique based on a voice conversion technique to
detect the associations for each speech. The obtained results we
obtained with the method indicate that it is more effective than
mel-cepstral distortion. In future work, we will explore objec-
tive evaluation indexes combining spectral features and other
features such as F0 and phoneme duration since we have used
only spectral features. We also plan to compare the performance
of the proposed technique with that of the other methods such
as PESQ [18].
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