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Abstract
Recent studies on multi-microphone speech databases indicate
that it is beneficial to perform beamforming to improve speech
recognition accuracies, especially when there is a high level of
background noise. Minimum variance distortionless response
(MVDR) beamforming is an important beamforming method
that performs quite well for speech recognition purposes espe-
cially if the steering vector is known. However, steering the
beamformer to focus on speech in unknown acoustic conditions
remains a challenging problem. In this study, we use single-
channel speech enhancement deep networks to form masks that
can be used for noise spatial covariance estimation, which steers
the MVDR beamforming toward the speech. We analyze how
mask prediction affects performance and also discuss various
ways to use masks to obtain the speech and noise spatial co-
variance estimates in a reliable way. We show that using a
single mask across microphones for covariance prediction with
minima-limited post-masking yields the best result in terms of
signal-level quality measures and speech recognition word error
rates in a mismatched training condition.
Index Terms: Microphone arrays, neural networks, speech en-
hancement, MVDR beamforming, LSTM

1. Introduction
Since close-talking and noise-free speech recognition accuracies
are closely approaching human speech recognition performance,
recent research efforts have focused more on far-field and noisy
scenarios. For far-field speech recognition, an important factor
is the use of multiple microphones for speech acquisition along
with multichannel techniques for noise reduction and speech
quality improvement for better speech recognition.

Recent work on multi-microphone databases such as the
AMI database [1, 2, 3] and recent challenges such as REVERB
[4], CHiME-2 [5], and CHiME-3 [6] indicate that perform-
ing beamforming of multiple microphone data improves per-
formance as compared to other direct techniques for speech
recognition. We believe more studies are necessary to analyze
various beamforming techniques for speech recognition.

Deep learning has produced unprecedented gains in per-
formance for speech recognition. Recent work on speech en-
hancement and source separation also indicate that deep neural
networks [7, 8, 9, 10, 11], especially deep recurrent neural net-
works such as long short-term memory (LSTM) networks yield
much better performance than the closest competitor in speech
enhancement of single-channel noisy speech [12, 13]. These
enhancement networks also help improve speech recognition ac-
curacy [14]. For multi-channel data, there are various directions
to explore using deep learning and in this paper we describe one
such approach.

Single-channel source separation algorithms can provide a
mask that assigns a proportion of each time-frequency bin to
each of the sources. When applied for speech enhancement, the
mask indicates the relative magnitude of speech with respect to
the noisy data at each time-frequency bin. The form of MVDR
beamforming described in [15] requires an estimate of the spatial
covariance matrix for the noise signal and the source signal
of interest. In this paper, we consider using time-frequency
masks for estimating these covariance matrices and analyze the
effects of using various mask combination techniques for noise
covariance prediction.

Predicting time-frequency masks and utilizing them for
beamforming have been considered in other recent studies as
well [16, 17, 18, 19]. Time-frequency masks are either derived
from generative models of spatial signals for each time-frequency
bin [19, 18, 16] or using single channel enhancement with neural
networks [17]. The idea in [17] is quite similar to our idea in this
paper. We became aware of [17] recently and we plan to quan-
titatively compare their approach with ours in the future. The
differences between our approach and [17] are as follows. We
evaluate various alternative ways of using single-channel masks
and we also consider the possibility of post-masking after beam-
forming. We use a signal domain loss function whereas [17] uses
a mask domain loss function with binary mask targets for train-
ing single-channel mask-prediction networks. In [17], a steering
vector for MVDR is predicted, but we do not explicitly predict a
steering vector since we use a different formulation of MVDR
beamforming. In the mask-prediction neural network, [17] uses
spectral magnitude as input, whereas we use log-Mel-filterbank
inputs. Finally, we perform mismatched speech recognition ex-
periments and use signal distortion ratio (SDR) in addition to
PESQ for evaluating our results.

2. Single-channel enhancement using
LSTMs

Previous studies [12, 13] have shown that LSTMs and BLSTMs
are particularly effective at dealing with highly challenging non-
stationary noises for speech enhancement. LSTM enhancement
systems have performed significantly better than other alterna-
tives such as nonnegative matrix factorization (NMF) and DNNs
in [12].

The speech enhancement problem can be mathematically
expressed in the short-time Fourier transform (STFT) domain
as:

ŷt,f = gfst,f + nt,f ,

where ŷt,f , st,f and nt,f are the STFT coefficients of the noisy,
clean and noise signals respectively, at time frame t and fre-
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quency f , and gf is the reverberation filter1. We would like to
recover the reverberant clean signal from the noisy signal. We
can use a neural network trained with noisy and clean signal
stereo pairs.

LSTM neural networks are a type of recurrent neural net-
work (RNN) that utilize memory cells that can potentially re-
member their contents for an indefinite amount of time. In
recurrent networks such as LSTMs, there are connections that
pass information from a time-step to the next time-step in ad-
dition to connections from a layer to an upper layer. LSTMs
additionally feature a cell structure that avoids the problems of
vanishing and exploding gradients that commonly arise in regu-
lar RNN training. In bidirectional LSTMs (BLSTMs), there are
two sequences of layers at each level, one running forward in
time as in classical RNNs, and another running backwards, both
feeding to the layers above at each time step.

2.1. Mask prediction

It has been shown in earlier studies of source separation that it
is beneficial for estimating the target signal to predict a mask
that multiplies the STFT of the mixed signal [12, 20, 9]. In such
approaches, the output of the network is a mask or filter function
[ât,f ](t,f)∈B = fW (ŷ), whereB is the set of all time-frequency
bins and W represents the neural network parameters. In this
case, the enhanced speech is obtained as ŝt,f = ât,f ŷt,f . The
input to the network is usually a set of features extracted from
the STFT of the noisy signal ŷ. In earlier studies, it was shown
that using the logarithm of mel-filterbank energies with 100
mel-frequency bins gave good results on a challenging speech
enhancement task [12].

In the case of mask prediction, the network’s loss func-
tion L(â) =

∑
(t,f)∈B D(ât,f ) can be a mask approximation

(MA) or a magnitude spectrum approximation (MSA) loss, cor-
responding to using distortion measures Dma(â) = |â − a∗|2
andDmsa(â) = (â|ŷ|−|s|)2, respectively, where a∗ is the ideal
ratio mask. Training involving the MSA loss has been found to
result in better performance [12].

3. Conventional beamforming
3.1. Linear observation model

A multi-channel linear data model with a single static source and
diffuse noise can be written as follows:

yi(τ) = bi(τ) ∗ s(τ) + vi(τ), for i = 1, . . . ,M

where M is the number of microphones, yi(τ) the signal at mi-
crophone i, s(τ) the source signal, bi(τ) the channel between
the source and microphone i, and vi(τ) the noise signal at mi-
crophone i. Here ∗ denotes the convolution operator. We call
xi(τ) = bi(τ)∗s(τ) the image of the source at each microphone.
Typically, we would like to estimate xref(τ) for a reference mi-
crophone.

If the environment can be assumed to be anechoic, then we
can simplify the model to the following:

yi(τ) = bis(τ − τi) + vi(τ)

where τi are the time-delays of arrival at each microphone.
These models are idealized and in real recordings we may

see time-varying behavior as well as nonlinearities where the
linear time-invariant model is only approximately correct. The

1Here, we assume filter length is shorter than frame length.

signals at each microphone can be combined using “beamform-
ing” techniques to enhance the source estimate and to reduce dif-
fuse and directional noise. We have experimented with weighted
delay-and-sum (WDAS) and minimum variance distortionless
response (MVDR) beamforming.

3.2. Weighted delay-and-sum beamforming

We use the BeamformIt implementation of weighted delay-
and-sum beamforming [21]. It uses GCC-PHAT [22] cross-
correlation to determine candidate time delays of arrival (TDOA)
between each microphone and a reference microphone. The
reference microphone is chosen based on pairwise cross-
correlations. These time delay candidates are calculated for
each segment of the signal and reconciled across segments using
a Viterbi search [21]. Furthermore, weights for each microphone
are determined based on cross-correlation of each microphone
signal with the other microphones for each segment [21]. After
finally determining TDOAs γi and weights wi for each micro-
phone, the beamformed signal for each segment is obtained as

x̂ref(τ) =

M∑
i=1

wiyi(τ − γi).

3.3. MVDR beamforming

An alternative beamforming method is the MVDR beamformer
which minimizes the estimated noise level under the condition of
no distortion in the desired signal [23, 15]. MVDR is a filter-and-
sum beamformer whose filters can be obtained in the frequency
domain as

[h1(f), . . . , hM (f)]T =
1

λ(f)
(G(f)− IM×M ) eref, (1)

where G(f) = Φ−1
noise(f)Φnoisy(f) is computed from the

M ×M spatial covariance matrices Φnoise(f) of the noise and
Φnoisy(f) of the noisy signal, and λ(f) = trace(G(f)) −M
[23, 15]. eref is the standard unit vector for the reference mi-
crophone, which can be chosen using maximum a posteriori
expected SNR. The STFT of the filter-and-sum beamformed
signal can then be obtained using STFTs yi,t,f of microphone
signals yi(τ) as x̂t,f =

∑M
i=1 hi(f)yi,t,f .

To obtain estimates of noise spatial covariance matrices, we
must estimate where only the noise is active in the measurements.
This is typically done by using an edge-mask, which assumes
a certain percentage or length of the utterance in the beginning
and end contain only noise. Another possibility is to use speech
presence probability estimation or voice activity detection (VAD)
to get noise estimates. These noise estimates are used to obtain
noise spatial covariances as follows. Assume we have obtained
an estimate v̂i,t,f of the STFT of the noise component of the
signal at microphone i through some method. We form M -
dimensional spatial noise vectors at each time-frequency bin
(t, f) as:

V̂t,f = [v̂1,t,f . . . v̂M,t,f ]
T , (2)

and can use them to get a noise spatial covariance estimate as:

Φ̂noise(f) =
1

T

T−1∑
t=0

V̂t,f V̂
H
t,f , (3)

where T is the number of frames in the utterance, and (.)H

indicates Hermitian transpose.
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Similarly, we can obtain a speech covariance estimate from
speech estimates, or just obtain the noisy signal spatial covari-
ance directly from measurements:

Φ̂noisy(f) =
1

T

T−1∑
t=0

Yt,fY
H
t,f

where Yt,f = [y1,t,f . . . yM,t,f ]
T is the spatial vector of the

observed noisy signals for each time-frequency bin, and use the
fact that Φ̂noisy(f) = Φ̂speech(f) + Φ̂noise(f).

4. Using single-channel enhancement masks
for beamforming

Apart from being applied to the output of beamforming as in
[24], LSTM enhancement can also be used to drive beamforming.
The main idea of this approach is illustrated in Figure 1. We
first enhance each microphone signal separately using LSTM
enhancement. The enhanced signals and the original signals
are used to obtain a robust beamformer. In this work, we use
predicted masks to estimate noise spatial covariances for MVDR
beamforming.

We experimented with several time-frequency domain masks
for estimating noise statistics from single-channel enhanced
signals. We obtain time-frequency masks through an LSTM
network that uses a magnitude spectrum approximation (MSA)
loss function. The network is trained from single-channel (CH5)
data only and applied to each channel separately to obtain several
single-channel masks.

We use the masks in the following fashion. We obtain time-
frequency masks âi,t,f from single-channel networks. These
masks are constrained to be in the range [0, 1]. We use these
masks to obtain initial noise and speech components which are
used to calculate spatial covariance matrices. Namely, we define

v̂i,t,f = (1− âi,t,f )yi,t,f

as the noise estimate used in calculating Equations (2) and (3).
We consider the following masking approaches to obtain

noise spatial covariances in MVDR:

1. Use the beginning and end parts of utterances as noise
mask (edge-mask scenario). Here âi,t,f = 0 only for the
first and last half second of the utterance and equal to one
elsewhere.

2. Use a separate “single-channel LSTM enhancement”
mask for each channel to obtain noise spatial covariance
estimates (multi-mask scenario). Here, âi,t,f is different
for each i obtained separately for each channel.

3. Use a single mask (e.g., by combining channel masks
using maximum or mean of all masks) to obtain noise spa-
tial covariance estimates (single-mask scenario). Here
âi,t,f = âj,t,f = ât,f for i 6= j. The common mask
is obtained as ât,f = max{ã1,t,f , ã2,t,f , . . . , ãM,t,f},
where ãi,t,f is the mask obtained from a single channel
network.

4. (Optionally) Apply a post-mask after beamforming us-
ing the reference microphone’s mask âref,t,f , with two
approaches:

(a) Tone down the mask to have a minimum floor (post-
mask:minfloor)

(b) Apply the mask directly (post-mask:direct)

Note that, the reference microphone is chosen based on the
average estimated a posteriori SNR as follows:

SNRpost,r =

∑F−1
f=0 hH

r (f)Φspeech(f)hr(f)∑F−1
f=0 hH

r (f)Φnoise(f)hr(f)
,

where hr(f) is theM -dimensional multi-channel filter response
(see Equation (1)) at discrete frequency index f = 0, . . . , F −
1 when reference microphone is chosen as r. Hence ref =
argmaxr SNRpost,r . So, initial masking choice effects which
microphone is chosen as a reference for each utterance. The set
of reference microphones are different for each masking choice.

5. Experiments and discussion
We performed beamforming using various masks and obtained
SDR results for the CHiME-3 data as shown in Table 1. The
results indicate that using a single mask reconciled over micro-
phones works better than using multiple masks. The single mask
is obtained by taking the maximum value of all M = 6 masks
in this case. By taking the maximum, we make sure that the
noise covariance estimates are obtained in regions of the time-
frequency plane where there is only noise according to all the
microphones. We also experimented with taking the mean of
all microphone masks and obtained slightly worse numbers (not
shown). Since speech signal arrives at the microphones with
varying delays, it may seem unnatural to combine the masks, but
since the delays are quite short with respect to the frame sizes
due to the CHiME-3 setup used, it is not a problem in this case.

The results also show that using post-masking after beam-
forming (with the same single mask in the single-mask case, and
with the channel mask obtained from the reference microphone
in the multi-mask case) with a minimum floor is better than not
doing post-masking and it is also better than directly applying
the post-mask. We chose a minimum floor value of 0.3 for the
post-mask.

The intuition for using a post-mask with a minimum allowed
value is due to artifacts caused by sharp-masking which effect
perceptual quality and speech recognition accuracies. Sharp
zeros in the STFT domain introduces artifacts and we can avoid
some of the artifacts either by no post-masking or limiting the
masking artifacts by having a mimimum allowed value of the
mask. The SDR values obtained using single-channel LSTM
enhancement masks for beamforming are quite promising and
they clearly indicate that performance can be gained by using
masks for beamforming.

Table 1: CHiME-3 SDRs (dB) using MVDR beamforming with
various masks.

mask post-mask sim-dev real-dev sim-test real-test

Edge-mask none 11.78 3.70 12.02 4.20
Single-mask none 15.04 5.87 14.36 5.02
Single-mask minfloor 15.79 6.72 15.12 5.52
Single-mask direct 15.80 6.72 15.10 5.36
Multi-mask none 13.42 3.94 13.00 3.75
Multi-mask minfloor 14.82 5.57 14.22 4.71
CH5 LSTM-enh n/a 10.44 4.41 10.41 3.11
CH5 noisy n/a 5.79 1.09 6.50 1.69

A note of caution here is that, for SDR measurement for
real data sets, since we do not know the exact clean speech data,
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Figure 1: System diagram illustrating the basic idea of using single-channel enhancement for beamforming.

we use close-talking microphone data, channel adapted to the
reference microphone, as the presumed clean data to obtain the
SDR values. Thus, the SDR results for real data-sets should be
taken with a grain of salt, since the target is not totally clean.
In addition, for MVDR beamforming, since we do not use a
fixed reference microphone for each utterance, the reference
microphone changes for each utterance and mask choice. The
set of reference signals are different from row to row in the table
due to reference microphone selection differences and hence the
SDR numbers may not be directly comparable.

Table 2 shows the results using the PESQ measure. The
results mostly follow the pattern of SDRs and indicate that using
a single mask is better and using a post-mask with a minimum
allowed mask value of 0.3 is also better than direct post-masking.
For the case of the challenging real test set, it seems to be bet-
ter not to apply any post-filtering at all. For this dataset, even
the noisy single-channel data obtains a better PESQ score than
the single-channel enhanced data since enhancement introduces
artifacts which cause perceptual quality problems in the recon-
structed speech signal.

Table 2: CHiME-3 PESQ results using MVDR beamforming
with various masks.

mask post-mask sim-dev real-dev sim-test real-test

Edge-mask none 1.58 1.42 1.67 1.72
Single-mask none 1.83 1.65 1.91 1.85
Single-mask minfloor 2.19 1.68 2.29 1.79
Single-mask direct 2.15 1.58 2.27 1.54
Multi-mask none 1.73 1.50 1.77 1.70
Multi-mask minfloor 2.13 1.57 2.22 1.70
CH5 LSTM-enh n/a 1.62 1.35 1.67 1.33
CH5 noisy n/a 1.27 1.28 1.27 1.45

In Table 3, we present the word error rates (WER) when
we use a recognition system trained from WDAS-beamformed
AMI data [2] and decode using MVDR-beamformed CHiME-3
data. The results are only provided for the more challenging
real data sets. The results show that using a single mask with
minima-limited post-masking yields the best result in WERs in
this mismatched training and test set scenario. The best WER we
obtain is better than the one obtained using WDAS beamforming
on CHiME-3 data.

We conjecture that using a single mask is better than using
multiple masks due to having less errors in actual combined
prediction of the masks. In addition, having separate masks could
cause some noise estimates at a time-frequency bin to be zero

Table 3: CHiME-3 WERs using MVDR beamforming with
various masks. The ASR system is trained on AMI multiple
distant microphone data (using WDAS beamforming) with a
DNN acoustic model trained with sMBR training criterion. The
training data is a significantly mismatched training set since AMI
data has almost no noise and the speech characteristics such as
accent, content and style are different.

mask post-mask real-dev real-test

Edge-mask none 31.30 43.59
Single-mask none 22.41 36.23
Single-mask minfloor 21.20 34.78
Single-mask direct 21.55 36.87
Multi-mask none 26.18 43.18
Multi-mask minfloor 24.20 40.93
CH5 LSTM-enh n/a 28.02 49.33
CH5 noisy n/a 34.79 55.53
WDAS beamforming n/a 22.67 36.19

and some others to be much higher than zero. This could cause
unstable estimation of noise spatial covariance matrices due to
partial observation of data and it seems it is better to take fully-
observed time-frequency bins to estimate these covariances. This
idea suggests combining the masks by taking their maximum to
obtain a single mask as we have done in our experiments.

6. Conclusion
We obtained experimental results showing that using masks
obtained from single-channel enhancements can improve the
performance of MVDR beamforming as compared to using edge
masks. Using a single mask seems to be more helpful than
using multiple masks. We reported SDR, PESQ and speech
recognition results in a mismatched scenario. In the future, we
plan to investigate a matched training scenario. An important
extension of this work could be to iteratively perform single
channel enhancement and beamforming. We plan to feed in noisy
signals and the beamformed signal along with the first round
enhanced signal to a second round single-channel enhancement
network.
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