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Abstract
Approximately 60% of children with speech and language im-
pairments do not receive the intervention they need because
their impairment was missed by parents and professionals who
lack specialized training. Diagnoses of these disorders require a
time-intensive battery of assessments, and these are often only
administered after parents, doctors, or teachers show concern.

An automated test could enable more widespread screening
for speech and language impairments. To build classification
models to distinguish children with speech or language impair-
ments from typically developing children, we use acoustic fea-
tures describing speech and pause events in story retell tasks.
We developed and evaluated our method using two datasets.
The smaller dataset contains many children with severe speech
or language impairments and few typically developing children.
The larger dataset contains primarily typically developing chil-
dren. In three out of five classification tasks, even after account-
ing for age, gender, and dataset differences, our models achieve
good discrimination performance (AUC > 0.70).
Index Terms: developmental speech and language impairment
classification, speech-pause characteristics, machine learning

1. Introduction
In 2012, 44.7% of children ages 3-5 who received services un-
der the U.S. Department of Education Individuals with Dis-
abilities Education Act (IDEA) had “speech or language im-
pairments” listed as one of their disability categories. This
incidence exceeded that of developmental delay (37.2 %) and
autism (7.8 %) [1]. Difficulty with speech and language in
childhood has a negative impact on self-concept, social inter-
actions, academic achievement, and vocational potential [2, 3].
Current identification of children with speech and language im-
pairments relies on parental reporting, primary care physician
evaluation, or, after the start of school, the input of teachers.
Epidemiologic studies show that approximately 60% of chil-
dren with speech and language impairments do not receive the
intervention they need because their impairment was missed by
parents and professionals who lack specialized training [4].

Automated screening tools based on characteristics ex-
tracted from speech do not rely on subjective evaluation and are
more easily scalable for use by professionals, parents, and ex-
perts. These tools could facilitate earlier diagnosis and more ex-
tensive and inexpensive monitoring. Earlier diagnosis of these
disorders could allow for earlier targeted intervention, and con-
tinued monitoring could help clinicians better understand the
nature and progression of these disorders.

Towards this end, we used machine learning to develop
classification models to distinguish children with speech and
language impairments from typically developing children. We
extracted features from acoustic signals of children retelling a
story to predict whether or not they have a speech or language
impairment. In this work, we focused on the utility of acous-
tic features based on speech and pause events, building on pre-
vious work that has shown that features relating to pauses in
speech can be used to effectively predict disorders such as child-
hood apraxia of speech [5, 6]. While language-based features
would almost certainly have predictive utility, the high variabil-
ity of children’s speech makes developing accurate automatic
speech recognition tools challenging, and existing adult-based
speech recognition algorithms cannot easily be applied to chil-
dren [7, 8]. In addition, these speech-pause characteristics are
simple to compute and are robust to different recording environ-
ments and speaker characteristics.

We developed and tested our methods on two sets of speech
samples. The first was obtained from a population of children
who were typically developing (TD) or were diagnosed with
idiopathic speech and language impairments in the following
categories: Childhood Apraxia of Speech (CAS), Specific Lan-
guage Impairment (SLI), Speech Sound Disorder (SSD), or a
comorbidity (CAS/SLI). The second dataset was obtained from
a much larger population of children who were primarily typi-
cally developing, with only a few members identified as having
language impairments.

These disorders can be categorized into speech disorders
(SSD and CAS) and language disorders (SLI). Children with
SSD and CAS have difficulty producing speech sounds cor-
rectly [9]. For children with CAS, this is a result of a motor
planning impairment, rather than as a result of physical impair-
ment [10]. SLI differs from CAS and SSD because it is a lan-
guage impairment, rather than a speech disorder. While chil-
dren with language disorders may not have trouble producing
correct speech sounds, they may have difficulty understanding
others or expressing themselves [11]. Our dataset also contains
children with a comorbid condition (CAS/SLI).

In this paper, we demonstrate that even after adjusting for
the effects of age, gender, and dataset, features capturing speech
and pause characteristics of a story retell task have predictive
value in distinguishing children with impairments from children
who are typically developing.
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2. Related Work
Developing an automated screening tool for developmental
speech and language impairments is a challenging task because
speech in children is highly variable; children’s voices differ
through development, and their language also differs exten-
sively across age groups. Lastly, children’s pronunciation of
words and speaking rate are not the same as those of adults;
thus, many existing adult-based speech recognition algorithms
may not transfer well to children [7, 8]. The high variability
in the typical development of children’s speech means that it
can be much more difficult to differentiate children with im-
pairments from those who are typically developing. Systems
such as PEAKS [12] and LENA [13] have been developed to
further these ends. [14] presents an automated tool that detects
speech errors that commonly occur in children with childhood
apraxia of speech (CAS).

Participants in the Autism Sub-Challenge of the Interspeech
2013 Computational Paralinguistic Challenge developed mod-
els for two tasks: 1) distinguishing typically developing chil-
dren from atypically developing children, and 2) diagnosing
the disorder type, where the disorders were Pervasive Devel-
opmental Disorder (PDD), Pervasive Developmental Disorder
Non-Otherwise Specified (PDD-NOS), and specific language
impairment (Dysphasia). The dataset had 2,542 speech record-
ings from 99 children, where 12 had diagnoses of PDD, 10 had
diagnoses of PDD-NOS, and 13 had specific language impair-
ment. The children were asked to imitate sentences of differ-
ent modalities and intonations. These examples were stratified
by age and gender for model development and testing. On the
task of classifying typical versus disordered samples, the base-
line performance (reported unweighted average recall) using a
linear SVM was 90.7% on the test set [15]. The metric of un-
weighted average recall obscures performance on the individual
classes, and neither the baseline nor the challenge winner [16]
accounted for the potential confounding effects of age and gen-
der. Accounting for these factors is especially important since
speech is widely variable across ages even in children who are
typically developing.

We develop and test classifiers for distinguishing several
speech- and language-impaired subgroups from typically devel-
oping. We use linear regression models to account for age, gen-
der, and dataset confounders in each of the features, and utilize
the residuals in our classification model. Our audio recordings
were obtained on a story retell task, rather than a sentence rep-
etition task. This task may enable us to capture more language-
related characteristics, even using acoustic features.

3. Data
3.1. D1: Speech and language impairments

Speech recordings were collected from 53 children who were
typically developing (TD) or had diagnoses of childhood
apraxia of speech (CAS), specific language impairment (SLI),
speech sound disorder (SSD), dyslexia, or a comorbidity
(CAS/SLI). Samples from children with dyslexia were removed
from the analysis because of the small sample size (4 children).
Details on the children used in the analysis are shown in Table
1. Speech samples were segmented to remove dialogue from
the interviewer and then concatenated together. The children
ranged in age from 4 years, 7 months to 17 years, 8 months. The
average length of the audio samples was 30.1 seconds (standard
deviation = 10.6 seconds).

All children had normal nonverbal IQ (no cognitive impair-

Table 1: Statistics on children in each diagnosis group in D1.

Diagnosis Number Mean Age Gender
in Months (Std) (Male)

Typical 10 137.1 (47.0) 9
CAS 9 123.7 (45.8) 9

CAS/SLI 11 124.2 (26.1) 11
SLI 10 119.0 (14.5) 4
SSD 9 100.3(13.7) 4

ments). Diagnoses for the children were determined based on
a battery of tests administered by speech and language profes-
sionals with years of experience and specialized training. Em-
phasis in selecting this subset of children was placed on pu-
rity of the diagnosis, rather than on sample size. Frequently,
speech and language impairments are comorbid with other de-
velopmental conditions. In the rest of the paper, we will refer to
this dataset as D1. We defined language impairment in D1 to be
a diagnosis of SLI, and a speech impairment to be a diagnosis of
SSD, CAS, or CAS/SLI. CAS/SLI was grouped with the speech
impairments in this analysis because their primary disorder was
identified as CAS.

3.2. D2: Typically developing children

Speech recordings were collected from children ages 4 years, 1
month to 9 years, 10 months. The story told to the children in
this dataset was longer and more detailed than the one told to
the children in D1. The average length of the speech samples in
this dataset was 50.4 seconds, with a standard deviation of 41.8
seconds. Statistics on this dataset are shown in Table 2. Very
few children were impaired in this sample; nineteen of the 201
children were classified as having a language impairment, and
none of the children were diagnosed with a speech impairment.
We will refer to this dataset as D2.

Table 2: Statistics on children in each diagnosis group in D2.
Diagnosis Number Mean Age Gender

in Months (Std) (Male)
Typical 182 79.1 (18.9) 90

Language impairment 19 74.6 (8.3) 7

3.3. Differences between datasets

In this work, we chose to pool the two datasets, despite their
differences. While both sets of children were asked to retell a
story, the story itself was different in the two datasets. Children
in D1 were asked to tell a much shorter story than those in D2
(average length of 30.1 seconds in D1 vs. 50.4 seconds in D2).
In addition, the children in D2 were younger than those in D1
and had a smaller variation in age distribution. The gender make
up of the two datasets also differed: most of the children in D1
were male, while D2 was more evenly distributed between gen-
ders (97 male, 104 female). Finally, D1 primarily contained
children with severe speech or language impairments (only 10
TD children), while D2 primarily contained TD children and
only 19 children with language impairments. The children with
language impairments in D2 also had much less severe condi-
tions than those in D1.

We chose to pool these datasets rather than analyzing each
one separately because there are too few TD children in D1,
and too few well-characterized impairments in D2. However, in
order to do a meaningful analysis of whether speech-pause fea-
tures are predictive of impairments (rather than the confounding
factors of age, gender, and dataset), we had to account for these
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confounders in each of the features. This process is described
in Section 4.2.

4. Methods
4.1. Signal Processing and Feature Extraction

We preprocessed the speech samples (Fs = 44.1 KHz) by man-
ually segmenting out portions of interaction with the examiner,
silence at the beginning and ends of the sample, and speech ir-
relevant to the story retell task in both datasets. The signals
were de-trended by removing the mean, and then low-pass fil-
tered (Fc = 5 KHz) to remove high-frequency noise. We ex-
tracted the amplitude envelope from the signals. The envelope
was calculated by squaring the signal, decimating the rectified
signal by a factor of 20, and then applying a low-pass filter with
a cutoff frequency of 30 Hz.

We used a speech-pause thresholding algorithm, similar to
the one proposed in [17], to segment the signal into speech
events and pause events. These events were determined by spec-
ifying three thresholds: 1) minimum speech event time, 2) min-
imum pause event time, and 3) a minimum amplitude thresh-
old. In addition to these thresholds, we applied a pitch detector
(between 100 Hz and 1200 Hz) to segment out noise artifacts
(e.g., hitting the microphone, page turns) while still preserving
all voiced activity. We also included a separate identifier for
“long” pauses vs. “short” pauses with the goal of separating
language-related pauses from speech-related pauses.

We used thresholds of 50 ms and 150 ms to determine con-
tinuous speech and pause events, respectively. These thresholds
were chosen from auditory and visual inspection of the acoustic
signals to prevent short sounds from being counted as speech,
and unvoiced utterances from being counted as pauses. Seg-
ments identified as pauses that were shorter than 150 ms were
included in the surrounding speech event. Similarly, segments
identified as speech events that were shorter than 50 ms were
included in the surrounding pause event. Lastly, we used a min-
imum amplitude threshold for speech events. This amplitude
threshold was based on the mean and standard deviation of a
segment of noise from the signal. Finally, pause events that
were longer than 1 second were considered long pauses; all oth-
ers were considered short pauses.

We extracted 13 features from the speech and pause events:
the mean (µ), standard deviation (σ), and coefficient of variation
(CV) statistics of the speech event durations and short pause
event durations, the number of speech events (nspeech), number
of short pause events (nshortp), and number of long pause events
(nlongp) (all normalized by the duration of the signal T ), the
fraction of time corresponding to speech (Tspeech/T ), the mean
and standard deviation of long pause event durations (µlongp and
σlongp), and the coefficient of variation ratio (CVR) between the
short pause durations and speech durations. The CVR was iden-
tified in [5] as a diagnostic marker for CAS.

4.2. Correcting for Confounders

As discussed earlier, we pooled data from the two datasets, de-
spite the fact that these datasets differ in several aspects. To
determine if the features of interest were predictive of speech
or language impairments, we first adjusted each predictor for
the confounds of age, gender, and dataset. Otherwise, these
features result in misleadingly good results by using this con-
founding information. In addition, the model weights would
capture the predictive effects of age or gender rather than the
features themselves, making the weights less informative. We

adjusted for confounders using a two-step process. In the first,
we fit linear regression models using the dataset as the indepen-
dent variable and each speech-pause feature as the dependent
variable. We then fit a second linear regression separately for
each dataset with age and gender as independent variables to
the residuals from the first step. These regression models were
fit using only the TD samples from the two datasets. We trans-
formed skewed features using the Box-Cox transformation [18]
before fitting the regression model. Residuals after the two-step
adjustment were used as the new predictors in our classification
model. We developed separate regression models for the two
data sets between age and each of the predictors because the age
distributions are different, and fitting a single linear regression
to both of the data sets did not remove significant correlations
with age in the smaller dataset (D1).

To evaluate how well this process adjusted for the con-
founders, we evaluated the Pearson correlation between each
feature and age before and after the correction. We also did
hypothesis tests of the differences in the means of each feature
between males and females, as well as between D1 and D2. We
used a Wilcoxon rank-sum test for these hypothesis tests be-
cause the number of examples in some categories is small (e.g.,
10 TD in D1) and the Wilcoxon rank-sum test is nonparametric
[19].

4.3. Model Development

In all of our experiments, we used a binary classifier to distin-
guish TD children (-1) from children with impairments (+1).
We used L2-regularized logistic regression to predict the prob-
ability of having an impairment (Equation 1). We used a linear
classifier for interpretability, and we used L2-regularization to
prevent overfitting.

min
w

1

2
wTw + C

n∑
i=1

log
(
1 + e−yiw

T xi

)
. (1)

We used 5-fold cross-validation on the training set to select the
best value for C. We used a fixed asymmetric cost parameter
equal to the class imbalance so that misclassification of impair-
ments was weighted more heavily than misclassification of typi-
cally developing. We searched forC in the range 10−3 to 102 in
powers of 10. Features were Z-score normalized based on the
training set. All models were trained using the LIBLINEAR
implementation of L2-regularized logistic regression in Scikit-
learn [20, 21].

4.4. Evaluation

We used a leave-one-out (LOO) holdout procedure to evaluate
our methods. We chose LOO because the number of positive
examples in our tasks ranged from as few as 10 to as many as
58, and LOO maximizes the number of training examples. We
then calculated the estimated positive predictive value (PPV),
recall, specificity, and area under the Receiver Operating Char-
acteristic curve (AUC) [22].

5. Results
In this section, we present our experimental results for adjust-
ing for confounders and predicting impairments vs. TD (from
both datasets). We use the following notation for the subpopu-
lations we consider: 1) language impairments: ImpL, 2) speech
impairments: ImpS , 3) all impairments: Imp, and 4) typically
developing: TD. To specify impairments or TD from a specific
dataset, we use a subscript (e.g., TDD1 denotes typically devel-
oping children from D1).
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5.1. Adjusting for confounders

We adjusted for confounders using the two-step process de-
scribed in Section 4.2. Before taking the residuals, there were
four variables (µpause, σpause, CVpause, nlongp/T ) with significant
differences (p-value < 0.05) between the TD children in D1
vs. D2 , and three variables (Tspeech/T , µspeech, nspeech/T ) with
significant differences between the TD gender groups. Two
variables (σspeech, CVspeech) were significantly correlated with
age in D1 and eight (nshortp/T , nspeech/T , µshortp, µspeech, σshortp,
σspeech, CVshortp, CVR) were significantly correlated with age in
D2. Taking the residuals after adjusting for age, gender, and
dataset removed all significant correlations with age (p-value =
1) and all significant differences in the means of the features
between gender groups (p-value > 0.4) or between datasets (p-
value > 0.5).

We evaluated the coefficient of determination (R2) of the
regression models from the two steps. These values are shown
in Figures 1 and 2. Figure 1 shows that dataset explains only a
small amount of the variation in the features. However, remov-
ing these confounding effects is important in the interpretation
of the importance of features in our final model. Figure 2 shows
that age and gender explain much more of the variation in the
features in D1 compared to D2, perhaps because D1 has only
10 TD children, whereas D2 has 182.

5.2. Predicting Impairments

We evaluated our method on several tasks: TD (from both
datasets) vs. 1) ImpD1, 2) Imp, 3) ImpL

D1, 4) ImpL, and 5)
ImpS

D1.The estimated AUC, positive predictive value (PPV),
sensitivity, and specificity are shown in Table 3. We consid-
ered tasks with and without the impairments from D2 because
the impairments from D2 are much less severe than those from
D1. All TD samples from both datasets were used for all tasks.

These results show that our performance is better on tasks
where impairments from D2 are not included (AUC of 0.79 for
ImpD1 vs. AUC of 0.68 for Imp). One reason why this might
be is that the impairments in D1 are much more severe than
those in D2. In addition, our performance on predicting speech
impairments (ImpS

D1) exceeded the performance on predicting
language impairments (ImpL

D1 or ImpL) in PPV and Sensitivity.
This is not surprising, since we are using only speech-pause

Figure 1: Step 1. Coefficient of determination (R2) scores for
linear regression models with dataset as a predictor.

Figure 2: Step 2. Coefficient of determination (R2) scores for
linear regression models with dataset residuals using age and
gender as predictors for D1 (top) and D2 (bottom).

Table 3: Estimated AUC, Positive Predictive Value (PPV), Sen-
sitivity, and Specificity results for LOO classification of typi-
cally developing vs. different impairments.

Impairment N n AUC PPV Sensitivity Specificity
ImpD1 231 39 0.7879 0.4444 0.7179 0.8177

Imp 250 58 0.6817 0.3563 0.5345 0.7083
ImpL

D1 202 10 0.8625 0.2308 0.6000 0.8958
ImpL 221 29 0.6212 0.1842 0.4828 0.6771

ImpS
D1 221 29 0.7437 0.2969 0.6552 0.7656

characteristics and no language-based features.

5.3. Feature weights

The average normalized feature weights for the five classifica-
tion tasks we considered are shown in Figure 3. There are no-
table differences in the feature weights for TD vs. ImpL com-
pared to TD vs. ImpL

D1. For example, the number of short
pauses normalized by duration was more indicative of ImpL

(language impairments from both datasets) than of ImpL
D1 (lan-

guage impairments from only dataset 1). This is similarly true
for the long pauses. This result may hint at the differing natures
of the tasks; because the story in D2 was longer and more com-
plex than D1, the children may have paused to think about their
responses more often than the children in D1. Finally, the CVR
had a higher weight for speech impairments than for language
impairments. This supports previous work that has shown that
the CVR could be used as a diagnostic marker for CAS [5].

Figure 3: Average normalized feature weights with standard er-
ror across LOO models.

6. Conclusions & Discussion
In this paper, we demonstrate the utility of speech-pause fea-
tures in screening children with speech and language impair-
ments. We adjusted features to remove confounding effects of
age, gender, and dataset and demonstrate good discriminative
performance on the task of distinguishing speech and language
impairments from typically developing. Future work will fur-
ther investigate the best amplitude and timing thresholds for
speech events, short pauses, and long pauses. In addition, al-
though we did adjust for confounding effects, the age and task
differences across the datasets may still affect the analysis. Fu-
ture work will investigate how we can better adjust for these
effects by segmenting speech from D2 into shorter utterances
like those in D1.
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