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Abstract 
The rate at which endangered languages can be documented 
has been highly constrained by human factors. Although 
digital recording of natural speech in endangered languages 
may proceed at a fairly robust pace, transcription of this 
material is not only time consuming but severely limited by 
the lack of native-speaker personnel proficient in the 
orthography of their mother tongue. Our NSF-funded project 
in the Documenting Endangered Languages (DEL) program 
proposes to tackle this problem from two sides: first via a tool 
that helps native speakers become proficient in the 
orthographic conventions of their language, and second by 
using automatic speech recognition (ASR) output that assists 
in the transcription effort for newly recorded audio data. In the 
present study, we focus exclusively on progress in developing 
speech recognition for the language of interest, Yoloxóchitl 
Mixtec (YM), an Oto-Manguean language spoken by fewer 
than 5000 speakers on the Pacific coast of Guerrero, Mexico. 
In particular, we present results from an initial set of 
experiments and discuss future directions through which better 
and more robust acoustic models for endangered languages 
with limited resources can be created. 
Index Terms: automatic speech recognition, endangered 
languages, large vocabulary continuous speech recognition, 
articulatory features, tonal features, acoustic-phonetic features, 
convolutional neural networks. 

1. Introduction 

1.1. Project goals  

Documenting endangered languages offers great potential to 
contribute exceptional primary data for linguistic research. 
The rate at which endangered languages can be documented, 
however, has been highly constrained by human factors. This 
is particularly true in regard to corpus development: although 
digital recording of natural speech in endangered languages 
may proceed at a fairly robust pace, transcription of this 
material is not only time consuming but severely limited by 
the lack of native-speaker personnel proficient in the 
orthography of their mother tongue. Training of native-speaker 
transcribers by language experts requires considerable time, 
and typically few individuals are ever available for 
transcription work. This inevitably results in a transcription 
bottleneck that significantly slows documentation efforts and 
corpus-based lexico-semantic and morphosyntactic research. 
The present project addresses both shortcomings: (1) it 
provides for the training of native speakers in transcription, 

and (2) it builds automatic speech recognition (ASR) software 
(discussed in this study) for an endangered language and relies 
on those trainees for annotation, so that word-recognition 
accuracy may be improved over time.  

1.2. Overview of Yoloxóchitl Mixtec 

The project leverages existing ASR speech technologies 
trained on time-coded transcriptions of recordings from 24 
speakers of Yoloxóchitl Mixtec (YM), an endangered Oto-
Manguean language of fewer than 5,000 speakers, which is 
spoken in a few communities on the Pacific coast of Guerrero, 
120 km east of Acapulco, Mexico. YM morphology is 
relatively simple with some inflectional (completive aspect, 
iterative/repetitive) and derivational (inchoative, 
denominalization through tone, causativization through 
prefixation and detransitivization through tonal alternations) 
features. Intervocalic lenition is prevalent. Unlike in other 
Mixtec languages, however, compounding seems to be 
relatively common. Person marking is by enclitics that often 
motivate vowel harmonization, stem-final elision of tone, and 
palatalization and labialization of stem-final consonants (tones 
are 1 low to 4 high). 
1. bi1xi32 (white hair, n.) > ku3-bi1xi32 (become white-haired) 
2. ku1sũ1 (sleep, v. intrans.) > ndu3- ku1sũ1 (return to sleep) 
3. yu1u4 (stone, n.) > yu4u4 (solid, adj.) > ku3-yu4u4 (become) 
4. chi3i3 (become wet/moist) > sa4-chi3i3 (moisten) 
5. ka3ã2 (perforate, v. trans.) <> ka1ã1 (perforate, v. intrans.)  
6. si13su2 (Bauhinia sp.) < sĩɁ¹ĩ³ ('foot') + i³su² ('deer') 
 Note loss of nasalization and laryngealization. 
7. ndi1ku4chi4 (broom) | [ndi1ku4či4] [ndi1gu4či4] [ndju14či4] 
8. be3Ɂã4 | be3Ɂe3=ã4 | house=3sgFem | her house 
9. ku1swĩ1 | ku1sũ1=i1 | sleep (irreal)=1sg | I will sleep 
10. syuɁ3un4 | siɁ3i4=ũ4 | mother=2sg | your mother 

Amith and Castillo García began work on YM in 2007 and 
have continued their efforts to the present, resulting in various 
publications, presentations, and manuscripts ([1], [2], [3], [4], 
[5], [6], [7]). In addition to some 70 hours of elicitation 
sessions targeting the phonetic and phonological study of 
nasalization and tone, their efforts have produced material that 
forms the basis for the present ASR effort: a 125-hour corpus 
of time-coded transcription of natural speech and a 2300-entry 
lexicon that comprises words both in the corpus and not yet 
recorded in natural speech. Though the material is substantive 
for endangered language documentation efforts, it is well 
within the low-resource range of language material usually 
used for natural language processing, including ASR. The 
project's objective is testing the potential of ASR technologies 
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to efficiently increase the size of transcribed corpora in low-
resource endangered languages and, in the process, to suggest 
guidelines for endangered language documentation efforts that 
might seek to use ASR at some point.  

1.3. Challenges for YM ASR 

The extant YM time-coded transcriptions will be used as a 
gold standard to train native speakers to write YM. These 
speakers will then be able to annotate initial ASR outputs, 
correcting transcription hypotheses as needed and thus 
providing a mechanism to continually improve both 
recognition accuracy and native-speaker transcription skills. 
However, beyond the difficulties presented by a low-resource 
language, the phonology of YM is also particularly 
challenging for ASR. Not only does it manifest oral, nasal, and 
laryngealized vowels, but it has a complex lexical, inflectional, 
and derivational tonal system with nine basic tones (level, 
rising, and falling) and up to 21 contrasts on a single 
disyllabic, dimoraic word, a level of minimal contrasts that 
negatively affects accuracy. In contrast to other Mixtec 
languages, however, YM lacks one characteristic—tone 
sandhi—that would further complicate accurate word-level 
tone recognition. In sum, the present project has implications 
for endangered language research, ASR for low-resource 
languages, and the building of ASR systems for complex tonal 
languages.  

2. Features 

2.1. Features types 

We investigated an array of features for training the YM 
acoustic model. The features included mel-filterbank (MFB) 
energies; gammatone filterbanks (GFBs); articulatory features 
(a.k.a. TVs) [8]; pitch and voicing features; and acoustic 
phonetic (APs) features. The MFB features were extracted by 
using the Kaldi speech recognition toolkit [9], with 40 MFBs 
extracted. The GFBs were extracted by using SRI 
International’s implementation of a time-domain gammatone 
filterbank, which contained 40 channels that were equally 
spaced on the equivalent rectangular bandwidth (ERB) scale. 
For the acoustic features, the analysis window was 25.6 ms, 
with a frame rate of 10 ms. The GFBs used a 15th power root 
nonlinear compression. 

Articulatory Features (AFs), articulatory motions from 
spontaneous speech, have been demonstrated by previous 
studies [10, 11] to provide robustness to speech recognition 
systems. In this previous work, we used a deep neural network 
(DNN) with four hidden layers containing 2048 neurons [12], 
to generate the articulatory features from the speech signal. 
The speech signal was parameterized as amplitude modulation 
features (NMCCs, see [13] for more detail regarding NMCC 
computation) that were fed as input to the DNN acoustic-to-
articulatory speech-inversion model (details regarding the 
model are presented in [12]). The DNN generated time-
domain vocal tract constriction variables (TVs). The TVs 
provide kinematic information regarding vocal tract 
constriction location and degree during speech production 
[14]. For each input acoustic feature frame, the DNN 
generated an eight-dimensional vector, whose elements 
represented tongue tip constriction degree and location; tongue 
body constriction degree and location; labial aperture and 
protrusion; glottal opening-closing; and velic opening-closing. 

 Acoustic Phonetic (AP) features [15] represent acoustic-
phonetic information (e.g., formant information, mean Hilbert 
envelope, and periodic and aperiodic energy in subbands [16]) 
and were analyzed at a 5 ms frame rate with a 10 ms analysis 
window. Thirteen APs were selected to represent information 
such as reflection coefficients, mean Hilbert envelope, 
periodic energy, aperiodic energy [16], and nasal energy [17]. 
Data such as periodic energy, Hilbert envelope, and other 
features provide information regarding voice quality and 
energy contour, among others. 

The Kaldi Pitch tracker [18] comes with the Kaldi pitch 
recognition toolkit [9] and provided two-dimensional output 
consisting of pitch tracks and a normalized cross-correlation 
function that gave an indication about voicing information. 

The SAcC pitch feature (for Subband Autocorrelation 
Classification) [19] is a noise-robust pitch tracker. SAcC 
involves a multilayered perceptron (MLP) classifier trained on 
subband autocorrelation features to estimate, for each time 
frame, the posterior probability over a range of quantized pitch 
values and one “no-pitch” output.  

The third pitch tracker used in our experiments is known 
as the MBCombF0 pitch-tracker, which is a modification of 
the correlogram-based F0 estimation algorithm described in 
[20]. In MBCombF0, a frame length of 100 ms was used, 
where the speech signal is downsampled to 8 kHz and split 
into four subbands that cover 0 to 3.4 kHz. Each subband had 
a 1 kHz bandwidth and overlapped the adjacent filter by 0.2 
kHz. Envelope extraction was then performed on each 
subband stream, followed by multichannel comb-filtering with 
comb filters of different inter-peak frequencies. Next, reliable 
comb-channels were selected individually for each subband by 
using a three-stage selection process (more details are 
presented in [20]). At the final step, MBCombF0 processing 
generated four subband summary correlograms that were 
combined by using a subband reliability weighting scheme to 
form the multiband summary correlogram. Time smoothing 
was applied to the multiband summary correlogram [21], and 
the resulting information was used to generate the 
MBCombF0 voicing and pitch feature used in this work. 

3. Acoustic model 
We trained different acoustic models for the YM speech 
recognition task, for which we explored traditional DNNs; 
convolutional neural nets (CNNs); time-frequency 
convolutional nets (TFCNNs) [22]; and the recently proposed 
hybrid convolutional neural net (HCNN). The acoustic models 
were trained with the features described in the previous 
section.  

It was shown in [23] that CNNs give lower WERs 
compared to DNNs when using filterbank features for ASR 
tasks, and that GFBs performed as well as or better than the 
MFBs. Hence, in this study, we used the MFB and GFB 
DNN/CNN model as our baseline systems.  

To generate the alignments necessary for training the CNN 
system, a GMM-HMM model was used to produce the labels 
for the senones. Altogether, the GMM-HMM system produced 
1644 context-dependent (CD) states for the YM data. The 
input features to the acoustic models were formed by using a 
context window of 15 frames (7 frames on either side of the 
current frame).  

The acoustic models were trained by using cross-entropy 
on the alignments from the GMM-HMM system. For the 
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CNN, 200 convolutional filters of size 8 were used in the 
convolutional layer, and the pooling size was set to 3 without 
overlap. The subsequent fully connected network had four 
hidden layers, with 1024 nodes per hidden layer, and the 
output layer included as many nodes as the number of CD 
states for the given dataset. The networks were trained by 
using an initial four iterations with a constant learning rate of 
0.008, followed by learning rate halving based on cross-
validation error decrease. Training stopped when no further 
significant reduction in cross-validation error was noted or 
when cross-validation error started to increase. 
Backpropagation was performed by using stochastic gradient 
descent with a mini-batch of 256 training examples. For the 
DNN systems, we used five layers with 1024 neurons in each 
layer, with similar learning criteria as the CNNs. 

The TFCNN architecture is based on [22], for which two 
parallel convolutional layers are used at the input, one 
performing convolution across time, and the other across the 
frequency scale of the input filterbank features. That work 
showed that the TFCNNs gave better performance compared 
to their CNN counterparts. Here, we used 75 filters to perform 
time convolution and 200 filters to perform frequency 
convolution. For time and frequency convolution, eight bands 
were used. A max-pooling over three samples was used for 
frequency convolution, while a max-pooling over five samples 
was used for time convolution. The feature maps after both the 
convolution operations were concatenated and then fed to a 
fully connected neural net, which had 1024 nodes and four 
hidden layers.  

The HCNN is a modified deep neural network architecture 
to jointly model the acoustic and the articulatory space [12]. In 
the HCNN, two parallel neural networks are trained 
simultaneously. These two parallel neural networks model two 
processes: (1) the learning of the acoustic space through a 
time-frequency convolutional net and (2) the learning of a 
temporal feature trajectory space through a time convolutional 
net. These two convolution layers had the same parameter 
specification as that used in the TFCNNs. The time-
convolution layer contained 30 filters, followed by a max-
pooling over five samples. The fully connected DNN layers 
were different in size, with 1024 neurons used for the TFCNN, 
and 512 neurons used for the time convolutional net. Note that 
both parallel networks were jointly trained. 

 

 
Figure 1: Schematics of the hybrid convolutional neural 
network (HCNN). The top layer represents a TFCNN whose 
input is typically filterbank features, and the bottom layer 
represents the temporal features processed through time 
convolution. 

4. Results 
Two baseline acoustic models were trained by using five-
hidden-layered DNNs with MFB and GFB features. Each 
hidden layer contained 1024 neurons. A trigram language 
model (LM) was used to decode the ASR hypothesis. The 
word error rates (WERs) from the baseline systems are shown 
in Table 1. 

Table 1. Baseline WERs from MFB and GFB features 
for YM DNN acoustic models. 

Features WER (%) 
MFB 36.9 
GFB 35.0 

Table 1 shows that the GFB baseline system gave lower 
error rates than the MFB features. GFB features have 
demonstrated better robustness to background distortions [23], 
and given that the YM recordings were made with realistic 
background conditions, the recordings can be expected to 
contain ambient noise and recording-microphone distortions. 
MFBs are typically found to be sensitive to background 
acoustic distortions, and hence Table 1 shows that GFBs under 
similar background conditions performed better than the 
MFBs, thus resulting in lower WERs for YM speech 
recognition. 

Next, we focused on using the GFB features, adding 
articulatory features, pitch features, and acoustic phonetic 
features. We then retrained the DNN acoustic model. Table 2 
shows that using additional features with GFBs reduced the 
WER by 6.86% relative to the GFB baseline DNN system. 

Table 2. WERs from GFB features with articulatory 
features, pitch features, and acoustic phonetic features 
added. 
Features WER (%) 
GFB 35.0 
 +articulatory 34.9 
   +KF0 32.9 
     +SAcC 32.6 
       +MBCOMBF0 32.5 
         +AP 32.6 

In addition to the DNN systems, we also explored using 
CNN and the recently proposed HCNN system using both 
GFBs and articulatory features. Table 3 shows the results from 
using the CNN and the HCNN systems. 

Table 3. WERs from GFB-CNN and GFB+articulatory 
HCNN systems. 
Features Model WER (%) 
GFB CNN 32.9 
GFB TFCNN 32.3 
GFB+articulatory HCNN 32.4 

Table 3 shows that using the TFCNNs and the HCNNs 
both reduced the WERs compared to the GFB-CNN model, 
indicating that leveraging temporal information and 
articulatory information was useful in performing more 
accurate speech recognition for the YM data. 

To compare how much tonal contrasts impact the 
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performance of YM speech recognition, we removed all tonal 
contrasts from the YM references and retrained the DNN 
acoustic model and the LM. Table 4 shows the results from the 
GFB TFCNN systems after tonal contrast removal, with a 
4.3% relative improvement in WER after removal of the tonal 
contrasts from the references. 

Table 4. WERs from GFB-TFCNN system with and 
without tonal contrasts. 

Features Tonal contrast WER (%) 
GFB Yes 32.3 
GFB No 30.9 

Table 2 shows that the AP features may not be providing 
useful information for YM ASR, hence using these features 
resulted in an increase in WER. Tables 2 and 3 also illustrate 
that by using convolutional acoustic models, such as TFCNNs 
and HCNNs, we can obtain performance as good as that 
obtained from using acoustic+articulatory+pitch features. This 
finding indicates that further improvement in performance 
could be achieved if the acoustic+articulatory+pitch feature 
combination were used in a CNN or other advanced acoustic 
models. 

We investigated using the HCNN for 
acoustic+articulatory+pitch features, where the acoustic 
features were input to a time-frequency convolutional net, and 
the articulatory+pitch feature was fed to a time convolutional 
net that shared their output layer. In addition, we explored 
bottleneck features, in which a five-hidden-layer DNN 
acoustic model was trained in a supervised manner with a 
bottleneck layer of 40 neurons. Figure 2 shows the architecture 
for bottleneck-feature extraction and training a DNN acoustic 
model. 

 
 
Figure 2: Bottleneck-feature extraction and DNN acoustic 
model training. Note that the senones in the figure represent 
context-dependent triphone states. 
 

We trained a bottleneck (BN) layer with 40 neurons, and 
the bottleneck features were spliced (contextualized) with 15 
frames. DNN acoustic models (we name these models “BN-
DNN”) with six hidden layers were trained having 2048 
neurons. We also trained DNN acoustic models with 
acoustic+articulatory+pitch features to compare their 
performance with respect to the bottleneck features. In 
addition, we also explored using the HCNN network, in which 
GFB was used to train the time-frequency convolution part of 
the HCNN, and articulatory+pitch features to train the time 
convolution part of the HCNN. The results are shown in Table 
5. 

Table 5. WERs from BN-DNN, multi-feature-fused 
DNN, and HCNN systems with different network sizes. 
Features Model WER (%) 
GFB+Artic.+Pitch DNN 31.1 
GFB+Artic.+Pitch HCNN 31.4 
BN DNN 31.3 

Table 5 shows that the multi-feature DNN gave the best 
performance, with a WER of 31.1%, which is as-good-as the 
performance of the GFB-TFCNN system without tonal 
contrasts reported in table 4. Note that the DNN models in 
Table 5 had six hidden layers with 2048 neurons, whereas the 
HCNN had 5 hidden layers with the same number of neurons. 
This finding indicates that fusing multiple features such as  
acoustic, articulatory and pitch features was beneficial for 
creating a better acoustic model for YM. 

5. Conclusion 
Although training an acoustic model for YM data was difficult 
given the diversity of tonal contrasts that exist in the language, 
this study demonstrates that a reasonable acoustic model can 
be trained. The best WER obtained from the acoustic models 
presented in this study was close to 30% and, when all the 
tonal contrasts were removed, was almost as good as that of 
the baseline system trained for the language. We observed that 
the GFB features performed better than the MFB features, 
which may be due to the nonlinear root compression of the 
GFBs, which are known to be more robust to acoustic and 
noise distortions. Note that the YM data was gathered from a 
field collection and, hence, contains varying background 
distortions and recording conditions. We found that robust 
acoustic models such as HCNN and CNNs gave reasonable 
performance improvement over the baseline system trained 
with DNN systems. The best performance, however, was 
obtained from using a simple DNN acoustic model trained 
with multiple acoustic features.  

In the future, we plan to investigate unsupervised learning 
of BNs through an autoencoder network that has already 
shown some interesting gains for ASR and comparable 
performance with respect to DNN-BN systems [24]. We will 
also explore late fusion of multiple systems [25], which 
typically has shown impressive performance improvements in 
the literature.  
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