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Abstract
Recent work has shown large performance gains using denois-
ing DNNs for speech processing tasks under challenging acous-
tic conditions. However, training these DNNs requires large
amounts of parallel multichannel speech data which can be im-
practical or expensive to collect. The effective use of synthetic
parallel data as an alternative has been demonstrated for sev-
eral speech technologies including automatic speech recogni-
tion and speaker recognition (SR). This paper demonstrates that
denoising DNNs trained with real Mixer 2 multichannel data
perform only slightly better than DNNs trained with synthetic
multichannel data for microphone SR on Mixer 6. Large re-
ductions in pooled error rates of 50% EER and 30% min DCF
are achieved using DNNs trained on real Mixer 2 data. Nearly
the same performance gains are achieved using synthetic data
generated with a limited number of room impulse responses
(RIRs) and noise sources derived from Mixer 2. Using RIRs
from three publicly available sources used in the Kaldi ASpIRE
recipe yields somewhat lower pooled gains of 34% EER and
25% min DCF. These results confirm the effective use of syn-
thetic parallel data for DNN channel compensation even when
the RIRs used for synthesizing the data are not particularly well
matched to the task.

1. Introduction
Recently there has been a great deal of interest in using deep
neural networks (DNNs) for channel compensation under re-
verberant or noisy channel conditions such as those found in
microphone data [1, 2, 3, 4, 5, 6]. The 2015 ASpIRE challenge
[7] evaluated automatic speech recognition (ASR) performance
on conversational speech recorded over far-field microphones
in different rooms. Details about the recording environments
used for the ASpIRE evaluation data were not disclosed to per-
formers prior to the evaluation and the performers were lim-
ited to using Fisher telephone data to train their systems. The
top performing ASR systems in the ASpIRE challenge all used
some form of denoising DNN trained on synthetic parallel mi-
crophone data generated from the Fisher telephone recordings
[7].

The denoising DNN approach has also been shown to work
well for speaker recognition (SR) [1, 8], but unfortunately there
is limited publicly available real microphone data appropriate
for evaluating SR performance. The Mixer 1 and 2, Mixer 4
and 5, and Mixer 6 corpora collected by the Linguistic Data
Consortium (LDC) include multi-session parallel microphone
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data that was used to measure cross-channel SR performance in
the NIST 2004, 2005, 2006, 2008 and 2010 SR evaluations [9,
10, 11, 12, 13, 14]. The complete set of wide-bandwidth Mixer
1 and 2 microphone recordings were used in this work and will
be available from the LDC in a future release. The LDC has
already released the Mixer 6 wide-bandwidth recordings [15]
which are also used in this work. For brevity the Mixer 1 and 2
corpora will be referred to simply as Mixer 2.

While future collections of real multi-microphone multi-
session data may be essential for evaluating the performance
of SR and other speech technologies under real and challeng-
ing channel conditions it may not be possible to collect enough
data for performers to use for system development. In this work
we try to address the question of whether using real parallel
multi-microphone data for developing channel robust SR sys-
tems has advantages over using synthetic multi-channel data.
For our analysis we use the Mixer 2 real parallel microphone
corpora and two synthetic parallel channel corpora derived from
the Mixer 2 telephone data. The first synthetic corpora uses
room impulse response (RIRs) and noise sources estimated us-
ing parallel microphone segments extracted from a small subset
of the Mixer 2 data, and the second synthetic corpora uses RIRs
drawn from three publicly available databases used in the Kaldi
ASpIRE evaluation system [16]. For evaluation purposes we
use the conversational portion of the Mixer 6 parallel micro-
phone corpora where the target and non-target trials are all over
the same microphone. For both Mixer 2 and Mixer 6, the wide
bandwidth microphone recordings are down sampled to 8 KHz
using the same technique described in [17].

2. DNN Channel Compensation
A denoising DNN is a neural network regression model trained
to reconstruct data from a clean target channel given the same
data from a different, possibly noisy and/or reverberated version
or from the same channel as the target. The objective function
for the denoising DNN is the minimum mean squared error be-
tween the output of the DNN and the target channel’s data. The
denoising DNNs’ output layer uses a linear activation function
(instead of the softmax activation function used for a neural net-
work classifier). For this work we use either the Mixer 2 multi-
channel corpus or a synthetic parallel corpus for training the
DNN with the telephone channel used as the target data. Both
the microphone and the target telephone channels are used as
input features to the DNN with the hope that the DNN will be
optimized to improve the microphone data while leaving the
telephone data unaltered. A 5 layer 1024 node DNN architec-
ture is used in all cases. The hidden layers of the DNN use the
same number of nodes and the sigmoid activation function.

Denoising DNNs have been used to extract features that are
beneficial for a range of different speech technologies and ap-
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Figure 1: Hybrid denoising DNN i-vector system

plications. The focus of this work is to use features estimated
by the denoising DNN as the input to an i-vector system for
channel robust SR. A simplified block diagram of the hybrid i-
vector/DNN system is shown in Figure 1. The i-vector system
uses a Gaussian mixture model (GMM) which is often referred
to as the universal background model (UBM) to extract zeroth
and first order statistics from the input feature vector sequence.
A super vector created by stacking the first order statistics is
transformed down to a lower dimensional sub-space using a
linear transformation that depends on the zeroth order statis-
tics (see [18] for more details). This transformation requires a
total variability matrix T which is estimated from a large set of
super-vectors using an EM-algorithm [18] or PPCA [19].

The i-vector is treated as a single low dimensional represen-
tation of a waveform that contains both speaker and channel
information. Mean vector m and whitening matrix W are used
to transform the i-vectors to have a unit normal distribution
N (0, I) before applying length normalization [20]. Then full
rank within class (Σwc) and across class (Σac) covariance ma-
trices are estimated using speaker labeled multi-session data and
the “2 covariance model” described in [21] is used for PLDA
scoring.

3. Microphone and Telephone Corpora
The Mixer 2 and Mixer 6 conversational microphone speech
collections were used in this work for evaluating microphone
channel compensation techniques for SR. For the Mixer 2 data
there are 239 speakers (123 female and 116 male) with 1035
sessions (averaging 4.3 sessions/speaker). The sessions were
recorded over 8 microphones (see Table 1) and a telephone
channel in parallel at three different locations: ICSI, ISIP and
LDC (see [11, 10, 14] for more details).

In order to train a denoising DNN on Mixer 2 data, a matched
filter was used to time align the data from each microphone
channel to the telephone channel. Audio files were rejected if
the alignment process failed. At the end of the process a total of
873 sessions out of the 1035 available sessions had data for all
channels.

The Mixer 6 microphone collection has data from 546 speak-
ers (280 female and 266 male) over 1400 sessions. There are a
maximum of 3 sessions per a speaker (the average is 2.5). The
sessions were recorded over 14 microphones (listed in Table 2)
in two office rooms at the LDC (see [13, 15] for more details).

Chan Microphone
01 AT3035 (Audio Technica Studio Mic)
02 MX418S (Shure Gooseneck Mic)
03 Crown PZM Soundgrabber II
04 AT Pro45 (Audio Technica Hanging Mic)
05 Jabra Cellphone Earwrap Mic
06 Motorola Cellphone Earbud
07 Olympus Pearlcorder
08 Radio Shack Computer Desktop Mic

Table 1: Mixer 2 microphones

Chan Microphone Distance (inches)
02 Subject Lavalier 8
04 Podium Mic 17
10 R0DE NT6 21
05 PZM Mic 22
06 AT3035 Studio Mic 22
08 Panasonic Camcorder 28
11 Samson C01U 28
14 Lightspeed Headset On 34
07 AT Pro45 Hanging Mic 62
01 Interviewer Lavalier 77
03 Interviewer Headmic 77
12 AT815b Shotgun Mic 84
13 AcoustImagic Array 110
09 R0DE NT6 124

Table 2: Mixer 6 microphones

The six microphones selected for this work, based on their dis-
tance from the speaker, appear in bold in Table 2. We chose
to evaluate target and non-target trials only on the same micro-
phone and same room since all sessions from a given speaker in
Mixer 6 were recorded in the same room.

Mixer 6 also includes sessions with varying vocal effort
(high, low and normal). Given the relatively small amount of
data available, all sessions were used for evaluating microphone
SR performance. During the initial course of our investiga-
tions we found that the high vocal effort speech significantly
degraded SR performance on the telephone channel data com-
pared to the performance observed over the microphone chan-
nels. Further analysis of high scoring false alarms revealed a
significant degree of distortion in the telephone handset for the
high vocal effort sessions. Therefore we have chosen to use
the standard NIST 2010 speaker recognition task for measuring
telephone SR performance instead of using the Mixer 6 tele-
phone channel data.

A test set was created from the Mixer 6 data for evaluat-
ing microphone SR performance with 1,230 target and 224,897
non-target trials for each of the 6 channels (7,371 target and
1,347,686 non-target trials pooled across all microphones). The
telephone potion of the SRE10 test set was used for evaluating
SR performance on telephone data. The SRE10 test set consists
of 7,094 target and 405,066 non-target trials.

4. Synthesized Corpora
The Mixer 2 telephone channel data was modified using RIRs in
two different ways. The first approach involved estimating the
RIRs and additive noise from a very limited portion of Mixer 2
and then simulating the entire data set by generating synthetic
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microphone data via filtering the original telephone speech with
the estimated RIRs and adding noise. Specifically, 60 sec seg-
ments were extracted from eight Mixer 2 sessions across all
eight parallel microphones. Each telephone microphone pair
was time aligned and the channel impulse responses were esti-
mated via Welch’s averaged periodogram over the speech seg-
ments while the additive noise was derived from the non-speech
portions. Given the limited reverberant conditions of the orig-
inal recording environment, the estimated impulse responses
were truncated to a 100ms duration. Each Mixer 2 telephone
recording was transformed for each microphone by randomly
selecting one of the eight RIRs to create the synthetic multi-
channel corpus. The additive noise was then applied to the
waveform using an overlap-add synthesis of randomized win-
dows of the noise estimate while maintaining the original SNR
levels.

The Kaldi ASpIRE approach described in [16] was used to
create a second synthetic corpus. RIRs were drawn from three
different sources: the Aachen Impulse Response (AIR) database
[22], the RWCP sound scene database [23] and the 2014 RE-
VERB challenge database [24]. Both the REVERB Challenge
and RWCP databases provided noise sources which were added
at randomly selected SNR levels of 0, 5, 10, 15 or 20 dB. The
RIRs were randomly selected eight times for each Mixer 2 tele-
phone recording.

5. Experimental Setup
Denoising DNNs were trained using 40 Mel frequency cepstral
coefficients (MFCCs) including 20 derivative coefficients ex-
tracted from a 25ms window of speech every 10ms. The input to
the DNN consist of the MFCCs feature vectors stacked in a 21
frame window with 10 frames before and after the center frame
(i.e. 225ms of speech) with the center frame corresponding to
the target feature vector. The target data for the DNN is a sin-
gle MFCC feature vector extracted from the telephone channel
data. The MFCCs are normalized using a non-linear warping
(see [25]) to fit a unit Gaussian distribution over a sliding 300
frame window for both the DNN input and output features. The
DNNs are trained using stochastic gradient descent (SGD) with
a mini-batch size of 256 and a learning rate of 0.1. In most cases
SGD training is completed in fewer than 20 epochs. The DNN
architecture in all cases consists of 5 layers with 1024 nodes per
layer and uses a sigmoid activation function.

The i-vector systems use a 2048 component Gaussian mix-
ture model and 600 dimensional i-vector sub-space. The GMM,
T, m, W Σwc, Σac parameters are all estimated using the
Switchboard 1 and 2 data sets. The baseline system uses 40
MFCC feature vectors with mean and variance normalization.
For our experimental results we report both the equal error rate
(EER) and minimum decision cost function (min DCF) for a
target prior of 0.01.

6. Experiments
In the following section, “Real Mixer 2” refers the Mixer 2
parallel corpus, “Mixer 2 RIRs” refers to the synthetic corpus
generated using the Mixer 2 derived RIRs and “Kaldi/ASpIRE
RIRs” refers to the synthetic corpus generated using RIRs
drawn from the AIR, RWCP or 2014 REVERB challenge
databases.

Performance for the baseline and DNN systems is presented
in Table 3 (EER) and Table 4 (min DCF). In the tables, “AVG” is
the average EER across microphones and “POOL” is the pooled

DNN Training AVG (imp) POOL (imp)
None (baseline) 11.5% (-) 21.2% (-)

Real Mixer 2 7.23% (37%) 10.6% (50%)
Mixer 2 RIRs 7.25% (37%) 11.1% (48%)

Kaldi/ASpIRE RIRs 9.66% (16%) 13.9% (34%)

Table 3: EER performance for real and synthetic parallel data
(improvement relative to the baseline is in parentheses)

DNN Training AVG (imp) POOL (imp)
None (baseline) 0.728 (-) 0.978 (-)

Real Mixer 2 0.581 (20%) 0.687 (30%)
Mixer 2 RIRs 0.592 (19%) 0.730 (25%)

Kaldi/ASpIRE RIRs 0.632 (13%) 0.729 (25%)

Table 4: Min DCF Performance for real and synthetic parallel
data (improvement relative to the baseline is in parentheses)

performance for scoring all microphones together. The differ-
ence between the AVG and POOL results to some extent reflects
the calibration of a given system.

In all cases, the DNN systems perform significantly better
than the baseline system with the DNN trained on real Mixer
2 data giving the largest relative improvement of 37% / 50%
for the AVG / POOL EERs and 20% / 30% for the AVG /
POOL min DCFs. The DNN trained using the Mixer 2 RIRs
corpus performs almost as well as the DNN trained on the Real
Mixer 2 corpus except that the POOL min DCF is significantly
worse. The DNN trained on the Kaldi/ASpIRE RIRs corpus
does not perform as well as the other DNNs but is still signifi-
cantly better than the baseline (16% / 34% relative improvement
in AVG / POOL EER and 13% / 25% relative improvement in
AVG / POOL min DCFs). The AIR, RWCP and REVERB 2014
databases provide RIRs from a broader range of acoustic envi-
ronments than the offices used in Mixer 2 and Mixer 6 collec-
tions which may explain the degraded performance using the
Kaldi/ASpIRE RIRs corpus.

DET plots for the four systems are shown in Figure 2. The
apparent correlation of performance across microphones with
the microphone distances listed in Table 2 is confirmed by an
analysis similar to the one presented in [26]. Distance attenua-
tion of the Mixer 6 microphones and system performance show
a Spearman correlation of 0.793 for the baseline system and
0.650 for Real Mixer 2 DNN system, confirming that channel
compensation helped mitigate the effect of distance from the
microphone on system performance.

It is important for the denoising DNNs to improve micro-
phone performance without degrading performance on conver-
sational telephone speech. To assess the performance impact of
the denoising DNN on telephony data we evaluated the DNNs
on the SRE10 telephone task. The results of this experiment
are given in Table 5. Note that there is actually a small gain in
performance for the Real Mixer 2 denoising DNN on SRE10
(a 12% reduction in EER and 8.9% reduction in min DCF) and
minor gains for the other two DNNs.

7. Conclusions
Collecting parallel multi-channel data from different environ-
ments over a range of microphones and microphone positions
can be prohibitively expensive and impractical. In this work we
have compared the use of real parallel multi-microphone speech
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Figure 2: DET curves from baseline (upper left), real Mixer 2 DNN (upper right), Mixer 2 RIRs DNN (lower left) and Kaldi/ASpIRE
RIRs DNN (lower right)

DNN Training EER DCF
None (baseline) 5.77 0.662

Real Mixer 2 5.05 0.603
Mixer 2 RIRs 5.24 0.632

Kaldi/ASpIRE RIRs 5.38 0.647

Table 5: Performance on SRE10 telephone data

data and synthetic multi channel speech data for training de-
noising DNNs for channel compensation. DNNs from both the
real Mixer 2 parallel data and a synthetic parallel corpus created
using RIRs from a small subset of Mixer 2 perform compara-
bly well on the Mixer 6 same-channel multi-microphone task
yielding large relative performance improvements. Significant
but lower performance gains were realized using data generated
with RIRs drawn from three publicly available databases used

in the Kaldi ASpIRE recipe. Importantly, all three denoising
DNN systems did not adversely impact telephone SR perfor-
mance as measured on the SRE10 telephone task implying that
the DNN channel compensation can be applied universally to
both telephone and microphone data. These results suggest that
the substantial performance improvements demonstrated using
DNN channel compensation for the SR task can be achieved
with far smaller (though diverse) collections of parallel micro-
phone data than has been acquired (at great expense) in the past.
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