
Novel Front-End Features Based on Neural Graph Embeddings for
DNN-HMM and LSTM-CTC Acoustic Modeling

Yuzong Liu 1∗, Katrin Kirchhoff 2

1 Amazon.com, Seattle
2Department of Electrical Engineering, University of Washington, Seattle

{yzliu,kk2}@uw.edu

Abstract
In this paper we investigate neural graph embeddings as front-
end features for various deep neural network (DNN) architec-
tures for speech recognition. Neural graph embedding features
are produced by an autoencoder that maps graph structures de-
fined over speech samples to a continuous vector space. The re-
sulting feature representation is then used to augment the stan-
dard acoustic features at the input level of a DNN classifier.
We compare two different neural graph embedding methods,
one based on a local neighborhood graph encoding, and another
based on a global similarity graph encoding. They are evaluated
in DNN-HMM-based and LSTM-CTC-based ASR systems on
a 110-hour Switchboard conversational speech recognition task.
Significant improvements in word error rates are achieved by
both methods in the DNN-HMM system, and by global graph
embeddings in the LSTM-CTC system.
Index Terms: acoustic modeling, graphs, semi-supervised
learning, deep neural networks

1. Introduction
Deep neural networks (DNNs) [1, 2] are being widely used in
acoustic modeling for large vocabulary conversational speech
recognition (LVCSR) systems. A feedforward DNN is a mul-
tilayer perceptron with multiple hidden layers. It is used to
map an acoustic feature vector (such as MFCC or fMLLR fea-
ture vectors) to target labels, typically context-dependent HMM
states (or senones) that are derived from a forced alignment of
the speech signal and training transcriptions. More recently,
studies have shown that more advanced deep models, such as
recurrent neural networks (RNNs) [3], can improve over feed-
forward DNNs. An RNN has recurrent connections within the
hidden layers, thus allowing temporal information to be stored
inside the network. Among these, long short-term memory net-
works (LSTMS) have been shown to outperform conventional
RNNs [4, 5]. LSTM is a special version of an RNN with mem-
ory cells that store temporal information. Each cell consists of
multiple gate logic units, which are used to add new informa-
tion, forget old information and decide on the output informa-
tion.

In addition, recent attempts at end-to-end speech recogni-
tion using connectionist temporal classification (CTC) [6, 7, 8,
9] have received much attention. CTC uses an objective func-
tion [10] for sequence labeling problems involving variable-
length input/output sequences that do not have to be of the same
length. Unlike training DNNs or RNNs in combination with a

∗Work was performed while the author was with the University of
Washington.

hidden Markov model (HMM), CTC does not rely on frame-
level training targets derived from a forced alignment and au-
tomatically learns the alignments between acoustic feature vec-
tors and labels.

In a complementary line of work [11, 12, 13] we have
shown that graph-based semi-supervised learning can provide
useful additional information for DNN-based acoustic mod-
els. In an early lattice-based rescoring approach to integrating
graph-based information [12], all training and test samples were
represented as nodes on a weighted graph. To infer senone dis-
tributions of the test samples on the graph, label information
was propagated from the training samples to the test sample by
minimizing an energy function on the graph. The new senone
posteriors were converted to likelihoods and were linearly in-
terpolated with other scores for the purpose of lattice rescoring.
However, the graph construction process required by this frame-
work quickly becomes computationally prohibitive for LVCSR
tasks. To alleviate computational overhead and achieve better
performance we have recently proposed a novel neural graph
embedding approach to acoustic modeling [13]. Instead of uti-
lizing a huge graph directly, we map the neighborhood infor-
mation for each sample into a compact feature representation
using an autoencoder. These compact feature representations
are then concatenated with the original acoustic feature vectors
(i.e. MFCC or fMLLR feature), and are fed into the DNN input
layer. We refer to this type of neural graph embedding features
as neighborhood graph embedding features or NGE features.

In this paper, we present several advances over this method.
First, we enrich the NGE features as described above with
speaker-dependent information. Second, we propose an alterna-
tive type of neural graph embedding features called similarity
graph embedding features, or SGE features. Unlike the NGE
features, which only encode local information for each sample,
the similarity graph embedding features capture the global man-
ifold information for each sample. We show considerable im-
provements over the NGE features on LVCSR tasks. Third, in
addition to DNN-HMM systems, we also test similarity graph
embedding features as front-end features in an LSTM-CTC-
based LVCSR system and again show improvements in word
error rate over both standard acoustic features and NGE fea-
tures.

The remainder of the paper is organized as follows: in Sec-
tion 2 we describe our previous framework on NGE features
and propose an improved NGE feature extraction using speaker-
dependent information. In Section 3, we describe the related
work on encoding similarity matrix and explain our novel SGE
features. In Section 4, we describe the baseline system and
datasets for this work and provide experimental results com-
paring both graph embedding methods. Section 5 concludes.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-542793



2. Local Neighborhood Graph Embeddings
In our previous work [13], we introduced neural graph em-
bedding features that encode local neighborhood information
for each sample (speech frame). The objective was to enrich
the standard acoustic feature vectors with information about
the most similar speech samples. Given an acoustic classifier
that produces probability distributions over a set of labels (e.g.,
HMM states) for each frame, we define the neighborhood en-
coding vector, or n-vector, for a given frame i as follows:

ni = l1 ◦ l2 ◦ · · · ◦ lk

where lj is the label distribution of the j-th nearest neighbor of
sample i, and ◦ is a vector concatenation symbol. To generate
the l vectors, we trained a simple MLP classifier on monophone
targets. In order to select the k nearest neighbors for a given
frame we chose a representative subset of “landmarks” from the
training and test data and only performed kNN selection against
these, rather than using the entire set of speech samples. Land-
marks (see further Sec.3.2) are a subset of representative feature
vectors that are intended approximate the entire data set. We de-
scribe the generation of NGE features as follows. Notationally,
we define our training set as L and the test set as U . We first
obtain a set of landmarks from L and U , and refer to these as
ZL and ZU respectively. Landmarks are obtained by k-means
clustering of the data and extracting the cluster centroids. We
then create n-vectors for all frames in L using landmark setZL.
These n-vectors are then used to train an autoencoder: each n-
vector constructed for L is passed to an autoencoder (a neural
network with a single hidden layer trained to minimize the re-
construction error between input and output), and the hidden
layer output g is extracted from the autoencoder. For each frame
in U , we create two n-vectors - one created using landmark set
ZL and another created using landmark set ZU . We can ex-
tract two graph embedding feature vectors gL and gU for each
sample. To use these embedding features for DNN training, the
features are further enriched with the similarity values for the k
nearest neighbors. Thus, the final feature vectors take the fol-
lowing form:

x = a ◦ gL ◦ gL ◦ sL ◦ sL(for training samples) (1)
x = a ◦ gL ◦ gU ◦ sL ◦ sU (for test samples) (2)

Here a is the original acoustic feature vector (MFCC or fM-
LLR features). s is a vector that consists of similarity values to
the nearest landmark points. We show in [13] that these neigh-
borhood graph embedding features yield significant improve-
ments over speaker-independent (SI) and speaker-dependent
(SD) DNN-HMM systems.

2.1. Speaker-Dependent NGE (SD-NGE) Features

In our previous work we created landmarks globally from the
entire training set and test data. In this work we investigate
selecting landmarks on a per-speaker basis to obtain better im-
provements. Formally, we define two types of landmark sets. A
global landmark set Zglobal is extracted from the entire train-
ing data. This set is identical to the landmark set ZL defined
in the previous NGE framework. In addition, a local landmark
set Zlocal is extracted on a per-speaker basis. In either case, we
use k-means and extract the centroids as landmark points. For
each frame in either training and test samples, we can create
two types of n-vectors: the first n-vector nglobal is created us-
ing kNN search against Zglobal, and the second n-vector nlocal

is created using kNN search against Zlocal. The resulting n-
vectors are passed into the autoencoder to extract two graph
embeddings features gglobal and glocal. Similar to our previ-
ous work we also create two similarity vectors sglobal and slocal

which consist of the similarity values to the neighboring land-
mark points. Let the original acoustic input vector to the DNN
be a, the final input feature to the DNN takes the following
form: x = a ◦ gglobal ◦ glocal ◦ sglobal ◦ slocal

Compared to the previous NGE features [13], which are
referred to as the SI-NGE features, the SD-NGE features, when
applied to the DNN input layer, provide both global (speaker-
independent) and local (speaker-dependent) information.

3. Global Similarity Graph Embeddings
The neighborhood embedding features described above are ex-
tracted by mapping graph neighborhood information to a con-
tinuous feature representation using an autoencoder. The neigh-
borhood information is local - i.e., we only use the label infor-
mation of the k nearest neighbors for a given frame. In this
section, we describe a similarity graph embedding (SGE) fea-
ture that encodes global information for each sample.

3.1. Encoding the Similarity Matrix

Encoding a global data similarity matrix into continuous space
has previously been studied in fields other than speech recogni-
tion. In [14] a deep autoencoder was trained to map a k-nearest
neighbor graph into a low-dimensional continuous vector space
for the purpose of data clustering. The input to the autoencoder
for each sample consisted of the row vectors of the normalized
similarity matrix representing the graph, and the nonlinear acti-
vation outputs from the last hidden layer were extracted as the
‘graph embedding features’. These features were then used as
inputs to a standard k-means clustering algorithm. Clustering
with graph embedding features yielded better results than di-
rect k-means clustering with the similarity graph row vectors or
spectral clustering on the similarity graph. In [15], the authors
used neural embeddings of a semantic knowledge-graph for the
purpose of semantic parsing. In [16], the authors proposed a
‘generalized autoencoder’ which extends the traditional autoen-
coder by taking manifold information into the reconstruction
term of the autoencoder training.

Following [14] a direct way to encode the manifold infor-
mation would be to use the row vectors in a similarity ma-
trix to train the autoencoder. This would require constructing
a similarity graph over all training and test samples, followed
by autoencoder training and feature extraction from the hidden
layer(s). This approach cannot be used directly in LVCSR tasks.
First, constructing a similarity graph over all training and test
samples jointly is computationally expensive, even when ap-
proximate kNN search procedures are used. More importantly,
the graph would have to be re-built, and the autoencoder would
have to be retrained, for every new test set, which is impractical.

3.2. Similarity Matrix Approximation using Landmarks

To address the computational complexity issue we again use
the concept of landmarks. In [17, 18] it was shown formally
how a large similarity matrix can be approximated using a set
of “landmarks”. Given a similarity matrix W, and a set of land-
marks Z = {zi}, i = 1, · · · ,m, the similarity matrix can be
approximated as follows:

W̃ = ZΛ−1Zᵀ

794



where W̃ is the approximated similarity matrix of W, Z ∈
Rn×m is a low rank matrix, and Λ is a diagonal matrix with
Λkk =

∑n
i=1 Zik. Z is a design matrix with Zij measuring

the similarity between sample i and landmark j. According
to Nadaraya-Watson kernel regression [19], Zij is defined as
follows:

Zij =
Kh(xi, zj)∑

z′∈Z Kh(xi, z′)
(3)

where Z = {z1, · · · , zm} is a set of landmarks, Kh(xi, zj) is
a kernel function defined on a given sample xi and a landmark
zj (in our case, we use the RBF kernel). In this way, we can
represent a large similarity matrix W using a much smaller low
rank matrix Z. More importantly, it is not necessary to train
new models for each new test set - all we need is a set of pre-
computed landmark points.

To train the autoencoder we can subsequently use the row
vectors in Z. Compared to using the row vectors of a full a simi-
larity matrix, the complexity is reduced from O(n2) to O(mn),
where m � n. In our LVCSR experiments n is usually in the
range of 107 whereas m is usually in the range of 103, which
reduces the data size by 4 orders of magnitude. After the au-
toencoder has been trained, we can create the graph embedding
features g. These are then concatenated with the existing acous-
tic features a: x = a ◦ g.

3.3. Comparison to Other Methods

NGE features are a somewhat ad-hoc representation of lo-
cal neighborhood information. By contrast, the SGE features
have a more solid theoretical foundation and a tight connec-
tion to spectral clustering. Spectral clustering aims at finding
k eigenvectors that correspond to the smallest non-zero eigen-
values of the graph similarity matrix. These eigenvectors can
be viewed as a low-dimensional embedding of the similarity
matrix; they can be used as inputs to a standard clustering al-
gorithms such as k-means. A graph autoencoder similarly finds
a low-dimensional embedding by virtue of being trained to re-
construct the similarity matrix. In [14] the authors proved that
the similarity graph embeddings and spectral clustering share
a similar objective based on the Eckart-Young-Mirsky theorem
[20].

The SGE features also bear some similarity to i-vectors
[21, 22], a feature representation that is widely used for speaker
identification and DNN adaptation. I-vectors are usually ex-
tracted using a universal background model (UBM-GMM) and
are used to measure how an UBM-GMM should be adapted in
an affine subspace in order to capture the variability of the un-
derlying speech segments. I-vectors can be extracted at either
utterance or speaker level. To use i-vectors for DNN training,
they are duplicated across all frames for each utterance/speaker
and appended to the acoustic feature vectors. Similar to SGE
and NGE, the i-vector extractor needs to compute a set of
UBM centroids, which is analogous to the landmark set we
are using for graph embedding features. The difference is that
i-vectors capture speaker variability at the speaker/utterance
level; whereas the graph embedding features capture the mani-
fold information at the frame level.

4. Experiments and Results
4.1. Data and Systems

For comparability with our previous work [13] we first eval-
uate the two graph embedding features on the SVitchboard-
II dataset [23], which is a set of high-quality, low-complexity

conversational English speech corpora created from the origi-
nal Switchboard-I dataset. To create these corpora, subsets of
Switchboard-I were selected that are acoustically representative
while having a limited vocabulary size. We use the largest-
vocabulary sub-task in SVitchboard-II for this study, which has
a vocabulary size of 9983. We refer to this set as SVB-10k. The
training, development, and test sizes are 67642, 8491, and 8503
utterances (69.1 hours, 8.8 hours and 8.8 hours), respectively.
A trigram backoff language model built on the training data is
used for decoding. In addition, we also evaluate the framework
using the larger 110-hour Switchboard-I task and report the per-
formance on the Switchboard part of the Hub5-00 test set. We
train a trigram backoff language model using the Switchboard
corpus.

We use two different ASR architectures for evaluation. The
first is a DNN-HMM system trained using Kaldi [24]. We train
both a speaker-independent (SI) and a speaker-dependent (SD)
version. The DNNs consist of 4 hidden layers with the tanh ac-
tivation functions; the output layer uses a softmax function. The
total number of output classes (senones) in the DNN is 1864 for
SVB-10k and 2390 for Switchboard-I. For the SI system we use
spliced MFCC features with a LDA transformation; for the SD
system, we first create a speaker adaptive trained (SAT) GMM-
HMM system, and use spliced fMLLR features as inputs to the
DNN. The targets for DNN training are created using forced
alignments from a SI-GMM-HMM and SAT-GMM-HMM sys-
tem, respectively. We use 20 epochs to train the DNN, with a
mini-batch size of 256. For the first 15 epochs, we decrease
the learning rate from 0.01 to 0.001 and fix the learning rate at
0.001 for the last 5 epochs.

The second architecture is a LSTM-CTC system trained us-
ing EESEN [25]. In the LSTM-CTC system we replace the
DNN by a deep bi-directional LSTM as the acoustic model. The
baseline LSTM networks consist of 2 hidden layers. Each layer
has a forward and a backward sub-layer, where each sub-layer
consists of 320 memory cells. For the baseline system we use
40-dimensional fMLLR features as inputs to the LSTM, with
mean and variance normalization applied on a per-speaker ba-
sis. For CTC training, we use 42 phonemes plus one blank sym-
bol as targets for SVB-10k, and 45 phonemes plus one blank
symbol for Switchboard. We use 20 epochs to train the LSTM,
with an initial learning rate of 0.00004. The learning rate is
halved when the improvements are no longer significant.

4.2. Autoencoder Training

For both NGE and SGE feature extraction, we select a subset
of landmark points. For NGE feature extraction, we extract a
set of landmarks from all frames in the training set. We parti-
tion these frames according to their phone labels derived from
forced alignments and run k-means for each partition. For si-
lence frames, we set k = 64; for the other phonemes, we set
k = 32. The resulting centroids are used as landmarks (1408
and 1504 landmarks in total for each task). These landmarks are
also used for the SGE feature extraction. For SI-NGE feature,
we extract the same number of landmarks from the test set; for
SD-NGE features, instead of selecting landmarks from an entire
test set, we extract 256 landmarks for each speaker. To generate
the probability distributions for the n-vectors, we train a sepa-
rate MLP classifier to produce monophone label distributions,
as before (more details can be found in [13]). The autoencoder
is a simple feedforward neural network with one hidden layer.
We train the autoencoder by minimizing the `2 reconstruction
loss on the training data. The inputs to the autoencoder for NGE

795



and SGE features are the n-vectors and the row vectors in the Z
matrix, respectively. The number of hidden units is 43 and 46,
for SVB-10k and Switchboard, respectively.

4.3. Experimental Results

We show experimental results comparing NGE features and
SGE features on different tasks and systems. We first compare
the original SI-NGE features (Row 2 and 5) and the SD-NGE
features (Row 3 and 6) in Table 1. Using the SI-NGE features
we reduce the word error rate (WER) by 1.5% and 0.8% on both
tasks. With the SD-NGE features, we further reduce the WER
by 2% and 1.5% absolute compared to SI baseline system (Row
1). It can be observed that, in a SD baseline system (Row 4),
the SI-NGE features do not lead to improvements on WER; on
the other hand, the SD-NGE features further reduce the WER
by 1% and 0.5% on two LVCSR tasks. This demonstrates that
the SD-SGE features are more helpful in training the DNNs.

SVB-10k SWB-110h
System WER System WER

1 SI-DNN (4/1024) 32.17 1 SI-DNN (4/1200) 23.7
2 + SI-NGE 30.59 2 + SI-NGE 22.9
3 + SD-NGE 30.18 3 + SD-NGE 22.5
4 SD-DNN (4/1024) 27.97 4 SD-DNN (4/1200) 20.0
5 + SI-NGE 27.93 5 + SI-NGE 20.2
6 + SD-NGE 26.90 6 + SD-NGE 19.5

Table 1: WER using SI and SD neighborhood graph embed-
dings. The parentheses indicate the number of layers and num-
ber of hidden units per layer. Numbers in bold-face indicate
significant improvement at p = 0.05.

We then compare the SD-NGE vs. SGE features in DNN-
HMM systems. In Table 2 we observe that the SGE features
(Row 3 and 6) consistently outperform the SD-NGE (Row 2 and
5) features. The improvement over the SI baseline system (Row
1) is even more significant. In SI-DNN systems the SGE feature
reduce the word error rate from 2% to 3.6% absolute on SVB-
10k and 1.2% to 2.6% absolute on Switchboard. Moreover, the
DNN system using SGE features usually has 10% fewer param-
eters than the system using NGE features. As the number of pa-
rameters increases, we can achieve further reduction in WERs.
In the SD-DNN systems (Row 4), both SGE and NGE features
yield similar performance. Again, the system using SGE fea-
tures achieves similar results using fewer parameters.

SVB-10k SWB-110h
System WER System WER

1 SI-DNN (4/1024) 32.17 1 SI-DNN (4/1200) 23.7
2 + SD-NGE [6.1M] 30.18 2 + SD-NGE [8.5M] 22.5
3 + SGE [5.5M] 28.60 3 + SGE [7.8M] 21.1
4 SD-DNN (4/1024) 27.97 4 SD-DNN (4/1200) 20.0
5 + SD-NGE [6.5M] 26.90 5 + SD-NGE [8.8M] 19.5
6 + SGE [5.9M] 26.80 6 + SGE [8.1M] 19.5

Table 2: WER using neighborhood graph embeddings and sim-
ilarity graph embeddings. The parentheses indicate the number
of layers and number of hidden units per layer. The brackets
indicate the number of parameters in the network. Numbers in
bold-face indicate significant improvement at p = 0.05.

We finally investigate different front-end features for
LSTM-CTC system. In the LSTM-CTC system NGE features

lead to severe overfitting. SGE features, on the other hand, are
a more robust feature representation resulting in consistent re-
ductions in WER. Figure 1 shows the CTC token (phoneme se-
quence) accuracy on the dev set on SVB-10k and Switchboard
using two front-end features. The token error rate is the nor-
malized edit distance between the prediction and target phone
sequence labels. It can be observed that the token accuracy
achieved with the SGE features is consistently higher than that
with the fMLLR features. As shown in Table 3, the WER is
reduced by around 1% and 0.4% absolute in both tasks.

SVB-10K

SWB-110h

Figure 1: Token (phoneme) accuracy using CTC training on
SVB-10k/ Switchboard dev set. Blue line shows baseline ac-
curacy at each epoch; green line shows accuracy using SGE
feature at each epoch.

SVB-10k SWB-110h
System WER System WER

LSTM-CTC (2/320) 31.27 LSTM-CTC (2/320) 23.4
+ SGE 30.20 + SGE 23.0

Table 3: WER using similarity graph embedding features on
LSTM-CTC system. The parentheses indicate the number
of LSTM layers and number of memory cell in each for-
ward/backward sub-layer. Numbers in bold-face indicate sig-
nificant improvement at p = 0.05.

5. Conclusion
In this paper we have proposed several types of neural graph
embeddings as ASR front-end features. The first is an
improved neighborhood graph embedding which integrates
speaker-dependent information. The second feature is a similar-
ity graph embedding that encodes global manifold information.
We have shown how these features perform as front-end fea-
ture in DNN-HMM and LSTM-CTC based ASR systems, and
how they can be scaled to LVCSR contexts using the concept
of landmarks. In future work we will evaluate this framework
on low-resourced ASR tasks where it may be difficult to train
speaker-dependent systems; we also plan to work on applica-
tions where the training and test conditions are drastically mis-
matched. Further work will study how to dynamically update
landmarks and the autoencoder feature extractor.

796



6. References
[1] F. Seide, G. Li, and D. Yu, “Conversational speech transcription

using context-dependent deep neural networks.” in Proceedings of
Annual Conference of the International Speech Communication
Association (Interspeech), 2011.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Maga-
zine, vol. 29, no. 6, pp. 82–97, 2012.

[3] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), 2013.

[4] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Proceedings of Annual Conference of the International
Speech Communication Association (Interspeech), 2014.

[5] J. Li, A.-R. Mohamed, G. Zweig, and Y. Gong, “LSTM time and
frequency recurrence for automatic speech recognition,” in Pro-
ceedings of IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), 2015.

[6] A. Graves and N. Jaitly, “Towards end-to-end speech recognition
with recurrent neural networks,” in Proceedings of International
Conference on Machine Learning (ICML), 2014.

[7] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep Speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.

[8] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos
et al., “Deep Speech 2: End-to-end speech recognition in English
and Mandarin,” arXiv preprint arXiv:1512.02595, 2015.

[9] Y. Miao, M. Gowayyed, X. Na, T. Ko, F. Metze, and A. Waibel,
“An empirical exploration of CTC acoustic models,” Proceedings
of IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), 2016.

[10] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
International Conference on Machine Learning (ICML), 2006.

[11] Y. Liu and K. Kirchhoff, “Graph-based semi-supervised learning
for phone and segment classification,” in Proceedings of Annual
Conference of the International Speech Communication Associa-
tion (Interspeech), 2013.

[12] ——, “Graph-based semi-supervised acoustic modeling in dnn
based speech recognition,” in Proceedings of IEEE Spoken Lan-
guage Technology Workshop (SLT), 2014.

[13] ——, “Acoustic modeling with neural graph embeddings,” in Pro-
ceedings of IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), 2015.

[14] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 2014.

[15] L. Heck and H. Huang, “Deep learning of knowledge graph em-
beddings for semantic parsing of Twitter dialogs,” in Proceedings
of GlobalSIP, 2014.

[16] W. Wang, Y. Huang, Y. Wang, and L. Wang, “Generalized au-
toencoder: A neural network framework for dimensionality reduc-
tion,” in Proceedings of Computer Vision and Pattern Recognition
Workshops (CVPRW), 2014.

[17] V. D. Silva and J. B. Tenenbaum, “Global versus local methods in
nonlinear dimensionality reduction,” in Advances in Neural Infor-
mation Processing Systems, 2002, pp. 705–712.

[18] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scal-
able semi-supervised learning,” in Proceedings of International
Conference on Machine Learning (ICML), 2010.

[19] E. A. Nadaraya, “On estimating regression,” Theory of Probability
& Its Applications, vol. 9, no. 1, pp. 141–142, 1964.

[20] C. Eckart and G. Young, “The approximation of one matrix by
another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218,
1936.

[21] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[22] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adap-
tation of neural network acoustic models using i-vectors.” in Pro-
ceedings of IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), 2013.

[23] Y. Liu, R. Iyer, K. Kirchhoff, and J. Bilmes, “SVitchboard II
and FiSVer I: High-quality limited-complexity corpora of conver-
sational English speech,” in Proceedings of Annual Conference
of the International Speech Communication Association (Inter-
speech), 2015.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz
et al., “The Kaldi speech recognition toolkit,” in Proceedings of
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU), 2011.

[25] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based de-
coding,” Proceedings of IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 2015.

797


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	No Other Manuscripts by the Authors
	----------

