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Abstract
Acoustic models based on long short-term memory recurrent
neural networks (LSTM-RNNs) were applied to statistical para-
metric speech synthesis (SPSS) and showed significant im-
provements in naturalness and latency over those based on hid-
den Markov models (HMMs). This paper describes further op-
timizations of LSTM-RNN-based SPSS for deployment on mo-
bile devices; weight quantization, multi-frame inference, and
robust inference using an ε-contaminated Gaussian loss func-
tion. Experimental results in subjective listening tests show that
these optimizations can make LSTM-RNN-based SPSS compa-
rable to HMM-based SPSS in runtime speed while maintaining
naturalness. Evaluations between LSTM-RNN-based SPSS and
HMM-driven unit selection speech synthesis are also presented.
Index Terms: statistical parametric speech synthesis, recurrent
neural networks.

1. Introduction
Statistical parametric speech synthesis (SPSS) [1] based on ar-
tificial neural networks (ANN) has became popular in the text-
to-speech (TTS) research area in the last few years [2–20].
ANN-based acoustic models offer an efficient and distributed
representation of complex dependencies between linguistic and
acoustic features [21, 22] and have shown the potential to pro-
duce natural sounding synthesized speech [2, 4, 7–9]. Recur-
rent neural networks (RNNs) [23], especially long short-term
memory (LSTM)-RNNs [24], provide an elegant way to model
speech-like sequential data that embodies short- and long-term
correlations. They were successfully applied to acoustic mod-
eling for SPSS [8–11]. Zen et al. proposed a streaming speech
synthesis architecture using unidirectional LSTM-RNNs with a
recurrent output layer [9]. It enabled low-latency speech syn-
thesis, which is essential in some applications. However, it was
significantly slower than hidden Markov model (HMM)-based
SPSS [25] in terms of real-time ratio [26]. This paper describes
further optimizations of LSTM-RNN-based SPSS for deploy-
ment on mobile devices. The optimizations conducted here in-
clude reducing computation and disk footprint, as well as mak-
ing it robust to errors in training data.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed optimizations. Experiments and subjective
evaluation-based findings are presented in Section 3. Conclud-
ing remarks are shown in the final section.

2. Optimizing LSTM-RNN-based SPSS
Figure 1 shows the overview of the streaming synthesis archi-
tecture using unidirectional LSTM-RNNs [9]. Unlike HMM-
based SPSS, which usually requires utterance-level batch pro-
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Figure 1: Overview of the streaming SPSS architecture using
LSTM-RNN-based acoustic and duration models [9].

cessing [27] or frame lookahead [28], this architecture allows
frame-synchronous streaming synthesis with no frame looka-
head. Therefore this architecture provides much lower latency
speech synthesis. However, there are still a few drawbacks;

• Disk footprint; Although the total number of parameters
in LSTM-RNN-based SPSS can be significantly lower
than that of HMM-based SPSS [9], the overall disk foot-
print of the LSTM-RNN system can be similar or slightly
larger because HMM parameters can be quantized us-
ing 8-bit integers [29]. Therefore decreasing the LSTM-
RNN system disk footprint is essential for deployment
on mobile devices.

• Computation; With HMM-based SPSS, inference of
acoustic parameters involves traversing decision trees at
each HMM state and running the speech parameter gen-
eration algorithm [27]. On the other hand, inference of
acoustic parameters with LSTM-RNN-based SPSS in-
volves many matrix-vector multiplications at each frame,
which are expensive. This is particularly critical for
client-side TTS on mobile devices, which have less pow-
erful CPUs and limited battery capacity.

• Robustness; Typical ANN-based SPSS relies on fixed
phoneme- or state-level alignments [2], whereas HMMs
can be trained without fixed alignments using the Baum-
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Figure 2: Illustration of computation graph of (a) single-frame
and (b) multi (two)-frame LSTM-RNNs.

x1

z1

x2

z2

x3

z3

x6

z6

x1

z1

x2

z2

x3

z3

x4

z4

x5

z5

x6

z6

x1

z1

x2

z2

x3

z3

x4

z4

x5

z5

x6

z6

2-frame, offset=0

2-frame, offset=1

1-frame

...

...
Target

Input
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bundled inference.

Welch algorithm. Therefore, the ANN-based approach
is less robust to alignment errors.

This section describes optimizations addressing these draw-
backs. Each of them that follow will be evaluated in Section 3.

2.1. Weight quantization

ANN weights are typically stored in 32-bit floating-point num-
bers. However there are significant advantages in memory,
disk footprint and processing performance in representing them
in lower integer precision. This is commonly approached by
quantizing the ANN weights. This paper utilizes 8-bit quan-
tization of ANN weights [30] to reduce the disk footprint of
LSTM-RNN-based acoustic and duration models. Although it
is possible to run inference in 8-bit integers with quantization-
aware training [30], that possibility is not utilized here; instead
weights are stored in 8-bit integer on disk then recovered to 32-
bit floating-point numbers after loading to memory.

2.2. Multi-frame bundled inference

Inference of acoustic frames takes 60–70% of total computa-
tions in our LSTM-RNN-based SPSS implementation. There-
fore, it is desirable to reduce the amount of computations at the
inference stage. In typical ANN-based SPSS, input linguistic
features other than state- and frame-position features are con-
stant within a phoneme [2]. Furthermore, speech is a rather sta-
tionary process at 5-ms frame shift and target acoustic frames
change slowly across frames. Based on these characteristics of
inputs and targets this paper explores the multi-frame inference
approach [31]. Figure 2 illustrates the concept of multi-frame
inference. Instead of predicting one acoustic frame, multiple
acoustic frames are jointly predicted at the same time instance.
This architecture allows significant reduction in computation
while maintaining the streaming capability.

However, preliminary experiments showed degradation due
to mismatch between training and synthesis; alignments be-
tween input/target features can be different at the synthesis
stage, e.g., training: x2 → {y1,y2}, synthesis: x3 →
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Figure 4: Plot of 1-dimensional ε-contaminated Gaussian dis-
tribution (µ = [0], Σ = [1], ε = 0.1, c = 10).

{y2,y3}. This issue can be addressed by data augmentation.
Figure 3 shows the data augmentation with different frame off-
set. From aligned input/target pairs, multiple data sequences
can be generated with different starting frame offset. By using
these data sequences for training, acoustic LSTM-RNNs will
generalize to different possible alignments between inputs and
targets.

2.3. Robust regression

It is known that learning a linear regression model with the
squared loss function can suffer from the effect of outliers. Al-
though ANNs trained with the squared loss function are not a
simple linear regression model, their output layers perform lin-
ear regression given activations at the last hidden layer. There-
fore, ANNs trained with the squared loss function can be af-
fected by outliers. These outliers can come from recordings,
transcriptions, forced alignments, and F0 extraction errors.

Using robust regression techniques such as linear regres-
sion with a heavy-tailed distribution [32] or minimum density
power divergence estimator [33] can relax the effect of outliers.
In this work a simple robust regression technique assuming that
the errors follow a mixture of two Gaussian distributions, in
particular, ε-contaminated Gaussian distribution [34], which is
a special case of the Richter distribution [35, 36], is employed;
the majority of observations are from a specified Gaussian dis-
tribution, though a small proportion are from a Gaussian dis-
tribution with much higher variance, while the two Gaussian
distributions share the same mean. The loss function can be
defined as

L(z;x,Λ) = − log
{

(1− ε)N (z; f(x;Λ),Σ)

+ εN (z; f(x;Λ), cΣ)
}
, (1)

where z and x denote target and input vectors, Σ is a covari-
ance matrix, ε and c are weight and scale of outliers, Λ is a set of
neural network weights, and f(·) is a non-linear function to pre-
dict an output vector given the input vector. Typically, ε < 0.5
and c > 1. Note that if ε = 0 and Σ = I , the ε-contaminated
Gaussian loss function is equivalent to the squared loss func-
tion. Figure 4 illustrates ε-contaminated Gaussian distribution
(µ = [0], Σ = [1], c = 10 and ε = 0.1). It can be seen
from the figure that the ε-contaminated Gaussian distribution
has heavier tail than the Gaussian distribution. As outliers will
be captured by the Gaussian distribution with wider variances,
the estimation of means is less affected by these outliers. Here
using the ε-contaminated Gaussian loss function as a criterion
to train LSTM-RNNs is investigated for both acoustic and dura-
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tion LSTM-RNNs. Note that the ε-contaminated Gaussian dis-
tribution is similar to globally tied distribution (GTD) in [37].

3. Experiments
3.1. Experimental conditions

Speech data from a female professional speaker was used to
train speaker-dependent unidirectional LSTM-RNNs for each
language. The configuration for speech analysis stage and data
preparation process were the same as those described in [9] ex-
cept the use of speech at 22.05 kHz sampling rather than 16 kHz
and 7-band aperiodicities rather than 5-band ones.

Both the input and target features were normalized to be
zero-mean unit-variance in advance. The architecture of the
acoustic LSTM-RNNs was 1 × 128-unit ReLU [38] layer fol-
lowed by 3 × 128-cell LSTMP layers [39] with 64 recurrent
projection units with a linear recurrent output layer [9]. The du-
ration LSTM-RNN used a single LSTM layer with 64 cells with
feed-forward output layer with linear activation. The hyper-
parameters were used across all languages.

At the synthesis stage, durations and acoustic features were
predicted from linguistic features using the trained networks.
Spectral enhancement based on post-filtering in the cepstral do-
main [25] was applied to improve the naturalness of the syn-
thesized speech. From the acoustic features, speech waveforms
were synthesized using the Vocaine vocoder [40].

To subjectively evaluate the performance of the systems,
preference tests were also conducted. 100 utterances not in-
cluded in the training data were used for evaluation. Each pair
was evaluated by at least eight native speakers of each language.
The subjects who did not use headphones were excluded from
the experimental results. After listening to each pair of sam-
ples, the subjects were asked to choose their preferred one, or
they could choose “no preference” if they did not have any pref-
erence. Note that stimuli that achieved a statistically significant
preference (p < 0.01) are presented in bold characters in tables
displaying experimental results in this section.

3.2. Experimental results for optimizations

3.2.1. Weight quantization

Table 1 shows the preference test result comparing LSTM-
RNNs with and without weight quantization. It can be seen
from the table that the effect of quantization was negligible. The
disk footprint of the acoustic LSTM-RNN for English (NA) was
reduced from 1.05 MBytes to 272 KBytes.

3.2.2. Multi-frame inference

While training multi-frame LSTM-RNNs, the learning rate
needed to be reduced as mentioned in [31]. Table 2 shows the
preference test result comparing single and multi-frame infer-
ence. Note that weights of the LSTM-RNNs were quantized
to 8-bit integers. It can be seen from the table that LSTM-RNN
with multi-frame inference with data augmentation achieved the
same naturalness as that with single-frame one. Compared with
1-frame, 4-frame achieved about 40% reduction of wall-
time at runtime synthesis.

3.2.3. ε-contaminated Gaussian loss function

Although c, ε, and Σ could be trained with the network weights,
they were fixed to c = 10, ε = 0.1, and Σ = I for both
acoustic and duration LSTM-RNNs.Therefore, the numbers of

Table 1: Subjective preference scores (%) between LSTM-
RNNs with (int8) and without (float) 8-bit quantization.
Note that “English (GB)”, “English (NA)”, and “Spanish (ES)”
indicate British English, North American English, and Euro-
pean Spanish, respectively.

Language int8 float No pref.

English (GB) 13.0 12.2 74.8
English (NA) 8.0 10.0 82.0

French 4.7 3.8 91.5
German 12.5 8.8 78.7
Italian 12.0 9.8 78.2

Spanish (ES) 8.8 7.5 83.7

Table 2: Subjective preference scores (%) between LSTM-
RNNs using 4-frame bundled inference with data augmentation
(4-frame) and single-frame inference (1-frame).

Language 4-frame 1-frame No pref.

English (GB) 25.7 20.2 54.2
English (NA) 8.5 6.2 85.3

French 18.8 18.6 62.6
German 19.3 22.2 58.5
Italian 13.5 14.4 72.1

Spanish (ES) 12.8 17.0 70.3

Table 3: Subjective preference scores (%) between LSTM-
RNNs trained with the ε-contaminated Gaussian (CG) and
squared (L2) loss functions.

Language CG L2 No pref.

English (GB) 27.4 18.1 54.5
English (NA) 7.6 6.8 85.6

French 24.6 15.9 59.5
German 17.1 20.8 62.1
Italian 16.0 10.6 73.4

Spanish (ES) 16.0 13.4 70.6

parameters of the LSTM-RNNs trained with the squared and ε-
contaminated Gaussian loss functions were identical. For train-
ing LSTM-RNNs with the ε-contaminated Gaussian loss func-
tion, the learning rate could be increased. From a few prelim-
inary experiments, the ε-contaminated Gaussian loss function
with a 2-block structure was selected; 1) mel-cepstrum and ape-
riodicities, 2) logF0 and voiced/unvoiced binary flag. This is
similar to the multi-stream HMM structure [41] used in HMM-
based speech synthesis [25]. Table 3 shows the preference test
result comparing the squared and ε-contaminated normal loss
function to train LSTM-RNNs. Note that all weights of the
LSTM-RNNs were quantized to 8-bit integers and 4-frame bun-
dled inference was used. It can be seen from the table that
LSTM-RNN trained with the ε-contaminated normal loss func-
tion achieved the same or better naturalness than those with the
squared loss function.

3.3. Comparison with HMM-based SPSS

The next experiment compared HMM- and LSTM-RNN-based
SPSS with the optimizations described in this paper. Both
HMM- and LSTM-RNN-based acoustic and duration models
were quantized into 8-bit integers. The same training data and
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Table 4: Average latency and total time in milliseconds to
synthesize a character, word, sentence, and paragraph by the
LSTM-RNN- (LSTM) and HMM-based (HMM) SPSS systems.

Latency (ms) Total (ms)

Length LSTM HMM LSTM HMM

char. 12.5 19.5 49.8 49.6
word 14.6 25.3 61.2 80.5
sent. 31.4 55.4 257.3 286.2
para. 64.1 117.7 2216.1 2400.8

Table 5: Subjective preference scores (%) between the LSTM-
RNN- and HMM-based SPSS systems .

Language LSTM HMM No pref.

English (GB) 31.6 28.1 40.3
English (NA) 30.6 15.9 53.5

French 68.6 8.4 23.0
German 52.8 19.3 27.9
Italian 84.8 2.9 12.3

Spanish (ES) 72.6 10.6 16.8

text processing front-end modules were used.
The average disk footprints of HMMs and LSTM-RNNs

including both acoustic and duration models over 6 languages
were 1560 and 454.5 KBytes, respectively. Table 4 shows the
average latency (time to get the first chunk of audio) and av-
erage total synthesis time (time to get the entire audio) of the
HMM and LSTM-RNN-based SPSS systems (North American
English) to synthesize a character, word, sentence, and para-
graph on a Nexus 6 phone. Note that the execution binary was
compiled for modern ARM CPUs having the NEON advanced
single instruction, multiple data (SIMD) instruction set [42]. To
reduce the latency of the HMM-based SPSS system, the recur-
sive version of the speech parameter generation algorithm [28]
with 10-frame lookahead was used. It can be seen from the ta-
ble that the LSTM-RNN-based system could synthesize speech
with lower latency and total synthesis time than the HMM-
based system. However, it is worthy noting that the LSTM-
RNN-based system was 15–22% slower than the HMM-based
system in terms of the total synthesis time on old devices hav-
ing ARM CPUs without the NEON instruction set (latency was
still lower). Table 5 shows the preference test result comparing
the LSTM-RNN- and HMM-based SPSS systems. It shows that
the LSTM-RNN-based system could synthesize more naturally
sounding synthesized speech than the HMM-based one.

3.4. Comparison with concatenative TTS

The last experiment evaluated the HMM-driven unit selection
TTS [43] and LSTM-RNN-based SPSS with the optimizations
described in this paper except quantization. Both TTS systems
used the same training data and text processing front-end mod-
ules. Note that additional linguistic features which were only
available with the server-side text processing front-end mod-
ules were used in both systems. The HMM-driven unit selec-
tion TTS systems were built from speech at 16 kHz sampling.
Although LSTM-RNNs were trained from speech at 22.05 kHz
sampling, speech at 16 kHz sampling was synthesized at run-
time using a resampling functionality in Vocaine [40]. These
LSTM-RNNs had the same network architecture as the one de-

Table 6: Subjective preference scores (%) between the
LSTM-RNN-based SPSS and HMM-driven unit selection TTS
(Hybrid) systems. Note that “Spanish (NA)” and “Portuguese
(BR)” indicate North American Spanish and Brazilian Por-
tuguese, respectively.

Language LSTM Hybrid No pref.

Arabic 13.9 22.1 64.0
Cantonese 25.1 7.3 67.6

Danish 37.0 49.1 13.9
Dutch 29.1 46.8 24.1

English (GB) 22.5 65.1 12.4
English (NA) 23.3 61.8 15.0

French 28.4 50.3 21.4
German 20.8 58.5 20.8
Greek 42.5 21.4 36.1
Hindi 42.5 36.4 21.1

Hungarian 56.5 30.3 13.3
Indonesian 18.9 57.8 23.4

Italian 28.1 49.0 22.9
Japanese 47.4 28.8 23.9
Korean 40.6 25.8 33.5

Mandarin 48.6 17.5 33.9
Norwegian 54.1 30.8 15.1

Polish 14.6 75.3 10.1
Portuguese (BR) 31.4 37.8 30.9

Russian 26.7 49.1 24.3
Spanish (ES) 21.0 47.1 31.9
Spanish (NA) 22.5 55.6 21.9

Swedish 48.3 33.6 18.1
Thai 71.3 8.8 20.0

Turkish 61.3 20.8 18.0
Vietnamese 30.8 30.8 38.5

scribed in the previous section. They were trained with the ε-
contaminated Gaussian loss function and utilized 4-frame bun-
dled inference. Table 6 shows the preference test result. It
can be seen from the table that the LSTM-RNN-based SPSS
systems were preferred to the HMM-driven unit selection TTS
systems in 10 of 26 languages, while there was no significant
preference between them in 3 languages. Note that the LSTM-
RNN-based SPSS systems were 3–10% slower but 1,500–3,500
times smaller in disk footprint than the hybrid ones.

4. Conclusions
This paper investigated three optimizations of LSTM-RNN-
based SPSS for deployment on mobile devices; 1) Quantiz-
ing LSTM-RNN weights to 8-bit integers reduced disk foot-
print by 70%, with no significant difference in naturalness; 2)
Using multi-frame inference reduced CPU use by 40%, again
with no significant difference in naturalness; 3) For training,
using an ε-contaminated Gaussian loss function rather than a
squared loss function to avoid excessive effects from outliers
proved beneficial, allowing for an increased learning rate and
improving naturalness. The LSTM-RNN-based SPSS systems
with these optimizations surpassed the HMM-based SPSS sys-
tems in speed, latency, disk footprint, and naturalness on mod-
ern mobile devices. Experimental results also showed that the
LSTM-RNN-based SPSS system with the optimizations could
match the HMM-driven unit selection TTS systems in natural-
ness in 13 of 26 languages.
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