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Abstract

In recent years speaker diarization becomes an important is-
sue. In previous works, we presented the Hidden Distorsion
Model (HDM) approach, in order to overcome the limitations
of traditional HMMs in terms of emission and transition mod-
eling. In this work, we show that HDM allows to build more
efficient speaker diarization systems both in terms of diariza-
tion error rated and in terms of memory footprint. The best
diarization performance is obtained using smaller than usual
emission models which constitutes potentially a key advantage
for embedded applications with limited memory resources and
computational power. A significant memory size reduction was
observed using LDC CALLHOME (American) for both SOM-
and GMM-based emission probability models.
Index Terms: speaker diarization, hidden Markov model
(HMM), hidden distortion model (HDM), Gaussian mixture
model (GMM), self organizing map (SOM)

1. Introduction
Speaker diarization in general and two-speakers diarization
more specifically is useful for many application fields like
forensics, homeland security or call center. Many different
approaches were applied in order to solve this problem [1].
These approaches can be divided into two groups, depending on
the availability of reliable data for off-line training processes.
The first group corresponds to the situation where this kind
of data is available. I-vectors-based diarization systems [2–5]
and extended hidden Markov model (e-HMM)-based diariza-
tion system [6] are good representative of such approaches. On
the other side, we find approaches which do not rely on off-
line training. For these approaches, the diarization process is
entirely based on the audio recording to be processed. The
Bayesian information criterion (BIC)-based diarization systems
with and without penalty terms [7, 8], HMM-based systems
[9,10] and its generalization to hidden distortion model (HDM)-
based system [11] are good candidates as these approaches
could be applied when there is no reliable data for the off-line
training or when the conditions are frequently varying.

The work presented in this article is a continuation of [11].
In [11] we presented hidden distortion model (HDM), a new
approach relative to the second group which could be seen as
a generalization of the Viterbi-based HMM approach. HDM
presents two advantages. The first is to rely not only on
the probabilistic framework but also on any additive distortion
emission models, e.g., sum of Euclidian distances or sum of the
negation of the log-likelihood, and non-probabilistic transition
costs. The second advantage is that it allows to scale the ratio
between the transitions and the emissions, similarly to [12]. The
main difference to [12] is the fact that HDM allows to optimize

the model parameters together with the scaling factor, which
was not allowed in the quoted previous work.

In [11] we showed that different transition cost matrices
can lead to different results for self organizing map (SOM) [13]
emission models, with adjusted scaling factors. In the present
work we explore the performance of HDM using Gaussian mix-
ture model (GMM) as emission models. We will also see if ad-
justing the scaling factor has an impact on the optimal emission
model sizes, using SOM or GMM emission models. As both
training process and Viterbi decoding complexity are almost lin-
early dependent on the model size, the diarization speed is also
directly linked to this meta parameter.

The rest of this article is organized as follows: Section 2
presents a quick overview of the HDM approach. A specific
highlight is set on the theoretical constraints and the scaled log-
likelihood transition costs. The diarization system is described
in 3. Experimental results on speaker diarization are given in
section 4. Finally, in section 5, we conclude with a discussion
about the benefits of HDM in the context of a diarization sys-
tem.

2. Hidden distortion model - HDM
Let us assume a system with K states. Each state k
is defined by a distortion model DMk, and let Cqk =
cost (sn = q|sn−1 = k) be the transition cost of being in state
q at any discrete time n, given being in state k at time n −
1. We define C = [Cqk]|q,k∈{1,...,K} to be the cost transi-
tion matrix. dk (xn) is a distortion of the data vector xn ∈
X = {x1, . . . , xN}, given a model DMk, where X is the se-
quence of data vectors. The distortion must be additive, i.e.,
D (X|DM) =

∑
xn∈X d (xn). A GMM is an example of

such a model, with d (xn) = − log (l (xn)), where l (xn) is
the likelihood of the model given the observation vector xn. In
addition, there is a vector of initial costs, for being in state k at
time n = 1: Π = [π1, . . . , πK ]T . Our model can be defined as
a tripletM = {{DMk} , C,Π}. The minimal cost of the data
and the states path S, given the model is given in eq. (1):

C (X,S∗|M) = min
S

{
πs1 + ds1 (x1)

+

N∑
n=2

(
dsn (xn) + Csnsn−1

)}
(1)

A parameter estimation problem is solved in the Viterbi
sense: Given Q observation vector sequences X = {Xq}Qq=1,
each of length Mq , Xq =

{
xq1, . . . , xqMq

}
and Q sequences

of states S = {Sq}Qq=1 , Sq =
{
sq1, . . . , sqMq

}
, find new

model parameters M that will minimize the total cost. First
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let us find the total cost of the data and state sequences given
the model:

C (X,S|M) =

Q∑
q=1

{
πqs1 + dqs1 (xq1)

+

Mq∑
n=2

(
dsqn (xqn) + Csqnsq(n−1)

)}
=

=

Q∑
q=1

πqs1 +

Mq∑
n=2

Cqsnq(sn−1)


+

Q∑
q=1

Mq∑
n=1

dqsn (xqn) =

= C (S|M) +D (X|S,M) (2)

Where C (S|M) is the total cost of the sequences given the
model and D (X|S,M) is the total distortion of the data given
the state sequences and the model.

As one can see, the distortion component and the cost com-
ponent are disjoint and can be minimized separately. Although
the two terms are disjoint, the data associated with each state
are highly dependent on the choice of the distortion measure,
which means that two different measures will lead to differ-
ent clustering (partition of the data). Different partitions inher-
ently affect the emission distortion models and the transition
costs. Due to the fact that we are able to use different scal-
ing hyper-parameters (fudge factor) in the system and to opti-
mize the parameters together with the scaling hyper-parameter,
this approach enables to balance the emission distortions and
the transition costs. When only one sequence is available (as
it happens in the targeted class of diarization problems), it is
not possible to estimate the initial costs. As there is no prior
information, all the initial costs are set to zero.

2.1. The scaled log likelihood constraint

In order to estimate the emission model parameters and the tran-
sition costs, Viterbi decoding is performed. In this work we ap-
ply only the scaled log-likelihood constraint for the transition
costs. A more detailed discussion about the constraints can be
found at [11].

There is a close relation between HDM with a scaled log-
likelihood constraint and the HMM with a “fudge factor” [12].

The scaled log-likelihood criterion is:

K∑
q=1

e−αCqk =

K∑
q=1

aqk = 1 (3)

When Cqk is the cost of transition to be at state q at time n
coming from state k at time n− 1. For α = 1.0 this constraint
is identical to the one in HMM when the transition probability
is defined as aqk = e−Cqk . In this case, we use a constraint
similar to HMM’s one but instead of putting only the cost in the
exponent, we use a scaled cost (in the case of Viterbi decoding it
is equivalent to use aαqk instead of aqk). Thus, the costs become:

Cqk = − ln (aqk)

α
=

1

α
ln


K∑
p=1

Npk

Nqk

 (4)

WhenNqk is the number of times in the path (usually according
to the Viterbi decoding) a transition from state k to state q was
observed.

3. The diarization system
We apply the HDM approach to two-speaker telephone speaker
diarization task. The system used for this experimental evalu-
ation is mostly the same as the one presented in [9] and [11].
Figure 1 presents the system’s block diagram. It is composed
of a set of pre-processing steps, feature extraction, speech/non-
speech detection, and overlapped speech detection, followed by
the diarization step.

Figure 1: Speaker diarization system.

First, classical 12 mel-frequency cepstral coefficients
(MFCC) are extracted every 20 ms with 50% of overlap.
Speech activity detection is performed using a simple energy
threshold. Overlapped speech detection is performed as de-
scribed in [9]. The detected overlapped speech segments are
taken out before to apply the diarization process.

The speaker diarization system has three hyper-states for
non-speech, speaker A, and speaker B. A fixed-duration con-
straint of 20 tied states (200 ms) is used during the first 5 it-
erations of Viterbi decoding and parameters estimation. Inside
the tied states, the transition to other hyper-state is forbidden. It
can be viewed as 20 states with shared parameters when only
one transition is available. An example of two state HDM with
fixed-duration constraint is shown in 2. In order to increase
the resolution, only 10 tied states are used for the last itera-
tion (giving a total of 6 iterations). Two kind of state emis-
sion models are examined: First self-organizing map (SOM) is
used (it is an Euclidean distance viewed as a distortion model);
the second is the Gaussian mixture model (GMM) (the nega-
tive log-likelihood is viewed as a distortion model). The non-
speech segments provided by the speech activity detector are
used to initialize the non-speech state emission model, while
the other two models are initialized using weighted segmental
K-means [10,14] which is applied only on the speech segments.
As each conversation is processed separately, no initial costs are
used.

4. Experiments and results
In this section we present the experiments we conduct on a sub-
set of LDC CALLHOME database [15]. We are using 108 two-
speakers conversations of about 30 minutes each from the En-
glish/American subset. Only about 10 minutes of speech per
conversation are labeled and are used for the diarization task.
The average duration of the speech segments is about 2.07 sec.
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Figure 2: Two-state fixed-duration HDM system.

4.1. Evaluation Criterion

Performance is evaluated using the frame-based diarization er-
ror rate (DER), as defined in [16]. The DER is calculated with
a 0.5 sec window around each changing point (i.e., errors that
take place within the 0.25 sec on either sides of a given chang-
ing point are not taken into account).

DER =

S∑
s=1

dur(s) ·
(
max(NRef (s), NSys(s))−NCor(s)

)
S∑
s=1

dur(s) ·NRef (s)

.

(5)
Where s is a speech segment and dur(s) is its duration;

NRef (s), the number of assigned speakers; NSys(s), the num-
ber of speakers assigned by the system and NCor(s), the num-
ber of speakers correctly assigned by the system. This equation
allows the DER criterion to take into account incorrect clas-
sifications as well as classifications with too many or too few
detected speakers.

4.2. Experiments with GMM as an emission model

In this subsection we use GMM as emission model for each
state. At the beginning α = 1.0 is used, i.e., in this case, HDM
is equivalent to a standard HMM. Different numbers of mixture
components are examined in order to find out the optimal HMM
configuration. The DER results are presented in Table 1.

Table 1: HDM results depending on the number of mixture com-
ponents for α = 1.0.

#Components 6 10 16 21 24
DER [%] 26.07 23.84 22.45 21.54 21.35

As can be seen from table 1, 21 and 24 mixture components
give approximately the same DER. So, we set the number of
mixture components to 21 for the rest of the experiment and we
change the value of the scaling hyper-parameter. The results are
presented at Table 2.

We can see that when the scaling hyper-parameter is tuned
in a proper way, a significant improvement can be achieved
(more than 37%). The best achieved results are for α = 0.05.
The question we asked ourselves is whether the number of mix-
ture components we found at table 1 is also optimal after α op-
timization. Table 3 presents the results of an experiment where
we use the optimal α and vary the model sizes. We observe
that the number of mixture components can be dramatically re-
duced! The best results are obtained with 16 mixture compo-

Table 2: HDM results for 21 mixture components with different
values of α.

α 0.02 0.05 0.1 0.5 1.0
DER [%] 18.51 13.55 14.48 19.55 21.54

nents. With this configuration, we also observe a small DER re-
duction of about 7% of relative improvement. The results for 10
mixture components are very close to the ones obtained with 16
components emission models. Even for 4 mixture components
emission models, the DER is almost equivalent. These results
mean that when the scaling hyper-parameter is well tuned the
emission models can be significantly simplified.

Table 3: HDM results for α = 0.05 with different number of
mixture components.

#Components 4 6 10 16 21
DER [%] 13.78 13.90 12.59 12.80 13.55

4.3. Experiments with SOM as an emission model

In this subsection we present experiments similar than in the
previous section but using SOM emission model at each state.
SOM can be view as a log-likelihood estimator [17] or just as
an Euclidean distance distortion measure. As for GMMs, we
start by setting α = 1.0 and different SOM sizes (number of
neurons or code-words) are examined to determine the optimal
configuration. The results in terms of DER are presented in
Table 4.

Table 4: HDM results as the number of SOM size for α = 1.0.

SOM size 6× 4 6× 6 6× 8 6× 9 6× 10

DER [%] 20.91 18.50 17.79 18.04 17.58

It can be viewed from table 4 that from SOM size of about
6 × 6 to size of 6 × 10, the differences in terms of DER are
quite small, even if the best results are obtained with the largest
models. It is consistent with the conclusions in [10].

As for GMM emission models, we evaluate the SOM per-
formance for different values of the scaling hyper-parameter α.
The results are presented at Table 5.

As in the GMM case the optimally tuned scaling hyper-
parameter improves significantly the diarization performance
(almost 26% of relative improvement). The best achieved re-
sults are for α = 0.2. Again we aim to figure out whether the
codebook size found at table 5 is the optimal size for the opti-
mized value of α. The results are summarized at Table 6. It can
be seen that the SOM size can be reduced from 6× 10 to 6× 6
or even 6 × 5, i.e., by 40 − 50%, from 60 code-words to only
30. For SOM size of 6× 4, the DER climbs to 14.56% but still
remains relatively low.
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Table 5: HDM results for 6× 10 SOM size with different values
of α.

α 0.1 0.2 0.3 0.5 1.0
DER [%] 13.76 13.03 13.38 15.08 17.58

Table 6: HDM results for α = 0.2 with different number of
code-words.

SOM size 6× 5 6× 6 6× 7 6× 8 6× 10

DER [%] 12.93 12.90 12.91 12.97 13.03

5. Conclusions
In this work we presented the HDM and evaluated its perfor-
mance using GMM and SOM as emission models. The tran-
sition cost matrix was defined according to the scaled log-
likelihood constraint. It was shown that an appropriate scal-
ing hyper-parameter can reduce dramatically the DER. Further-
more, to tune optimally the scaling hyper-parameter allows to
reduce significantly the size of the emission models and such
to have much less parameters to estimate. The DER using the
simplified models are not degraded but even slightly better com-
pared to large models DER. This result can be explained by
the fact that for large DER, the frames associated with each
state are not belonging only to one specific speaker. It makes
the pdf much more complicated and require many parameters
(Gaussian components or neurons, code-words) for the emis-
sion model to describe it. When the number of errors is small,
the frames associated with one state belong mainly to only one
speaker. The variability is smaller and the pdf could be esti-
mated with a smaller number of parameters, giving a more ro-
bust estimation (due to a better number of data / number of pa-
rameters to estimate ratio).

It is interesting to understand the meaning of the costs we
obtained. With HMM trained via Viterbi statistics, the transi-
tion probabilities are aqk = Nqk

/∑K
p=1Npk, then the transi-

tion cost is Cqk = − ln (aqk). When using the scaling hyper-
parameter the transition cost is also divided by it and becomes

Cqk = − ln(aqk)
α

. As the optimal hyper-parameter is α = 0.05
and α = 0.2 for GMM and for SOM (as emission models) re-
spectively, it means that we increased the transition cost by 20
in the GMM case and by 5 in the SOM case. This fact leads to
the conclusion that the transition costs are much more important
in order to obtain a good diarization than what can be achieved
using a standard HMM. Of course it is possible that other tran-
sition costs criteria can be even better (see [11] for additional
examples) and also other emission models. The choice of the
transition cost criterion and the emission model has to be done
depending of the diarization problem to solve and the evaluation
criterion to optimized.

As we were able to achieve better performance in terms
of DER using much smaller emission models when the scal-
ing factor is optimal, it becomes easier to apply diarization on
embedded systems. This is due to the fact that the memory re-
quirements as well as the time for model training and for Viterbi
decoding are all approximately linear with the number of mix-

ture components (or the number of code-words).
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