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Abstract

Traditional denoising schemes require prior knowledge or

statistics of the noise corrupting the signal, or estimate the noise

from noise-only portions of the signal, which requires knowl-

edge of speech boundaries. Extending denoising methods to

perform well in unknown noise conditions can facilitate pro-

cessing of data captured in different real life environments, and

relax rigid data acquisition protocols. In this paper we propose

two methods for denoising speech signals in unknown noise

conditions. The first method has two stages. In the first stage we

use Long Term Signal Variability features to decide which noise

model to use from a pool of available models. Once we deter-

mine the noise type, we use Nonnegative Matrix Factorization

with a dictionary trained on that noise to denoise the signal. In

the second method, we create a combined noise dictionary from

different types of noise, and use that dictionary in the denoising

phase. Both of our systems improve signal quality, as measured

by PESQ scores, for all the noise types we tested, and for dif-

ferent Signal to Noise Ratio levels.

Index Terms: Nonnegative Matrix Factorization, Speech Sig-

nal Processing, Denoising, Long-Term Signal Variability

1. Introduction and Relation To Prior Work

Real life speech processing can be challenged by different en-

vironment noise and channel conditions, degrading the perfor-

mance of speech applications. In the last few years data avail-

ability, and the need of speech applications operating under a

variety of noise conditions, has renewed the efforts on more so-

phisticated denoising schemes. For example, subspace methods

with time and spectral constraints ([1], [2]) as well as Nonnega-

tive Matrix Factorization methods ([3], [4]) are not restricted to

specific noise types (e.g. stationary or quasi-stationary). How-

ever, all these methods require either prior information about

the noise conditions that corrupt the speech signal or a robust

estimate of the noise. This type of knowledge cannot always

be obtained, especially if the data are collected from various

sources and under varying noise conditions.

The motivation behind this work is to design a system that

would be able to operate under unknown noise conditions at

different Signal to Noise Ratio (SNR) levels without requiring

prior information about the noise. To that end, we developed

two methods. The first method has two stages. In the first stage,

we choose an appropriate pre-trained noise model to “match”

the noise of the corrupted signal. The work in [5] addresses

the problem of noise classification in speech signals using Bark

Scale features, and we followed a similar approach in [6]. This

is a classic pattern classification task, where the tested signal

is corrupted by one of the noises that the system was trained

on. The problem with this approach arises when the signal is

corrupted by a type of noise that the system was not trained

on. The sensitivity of Bark Scale features and MFCCs to noise

results in poor generalization properties when such systems en-

counter unknown types of noise. To overcome these issues we

use a method that is based on Long-Term Signal Variability

(LTSV), introduced in [7]. Once we compute LTSV features on

the test signal we construct a histogram of its values and find the

Kullback–Leibler (KL) distance of the signal LTSV histogram

to other LTSV histrograms in our training set. In the second

stage of our system, we employ Nonnegative Matrix Factoriza-

tion (NMF) to denoise the signal, using the noise model we

selected in the first phase. NMF has been succesfully used in

speech denoising ([3], [4]), for a variety of noise types.

In the second method, we do not supply a chosen noise

model to NMF. Instead we create a “combined” noise dictionary

from a variety of noises, which is used by NMF for denoising.

The intuition behind this approach is that if this combined dic-

tionary contains noise types which are similar to the noise that

corrupts the signal, then the atoms of the dictionary will ade-

quately model the noise that corrupts the test signal.

The rest of the paper is organized as follows. In Section 2

we present the system based on model selection. In Section 3

we describe the system based on the combined noise dictionary.

In Section 4, we present and discuss our results. Finally, in

Section 5, we draw our conclusions and provide future research

directions for a speech denoising framework in unknown noise

conditions.

2. Method Using Model Selection

In the first stage of our system, we choose an appropriate noise

model to “match” the test signal. To achieve this goal, we first

compute the LTSV values L(m) for every frame m. LTSV is

computed using the last R frames (analysis window) of the ob-

served signal x with respect to the current frame of interest:

L(m) ,
1

K

K
∑

k=1

(

ξk(m)− ξ(m)
)2

ξ(m) =
1

K

K
∑

k=1

ξk(m)
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where S(n, ωk) is the short time spectrum computed for the nth

frame over k = 1, . . . ,K frequencies. In our experiments the
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length of the LTSV analysis window R is 30 frames, while for

the short time spectrum we used a window of 25 ms with a shift

of 10 ms. After calculating the LTSV values for each frame, we

perform moving average smoothing (with a window span of 20

frames) to eliminate abrupt transitions of LTSV values. Then,

we construct a normalized histogram P of the smoothed LTSV

with 151 bins (the number of bins was chosen heuristically as

the result of experimental procedure).

To build our training histogram set we used 300 utterances

from the TIMIT database (including both male and female

speakers). To each utterance we added fifteen different types

of noise at five different SNR levels, from -5 dB to 15 dB with

a step of 5 dB. Thus, we have a total of 1500 histograms for

each of the fifteen different types of noise in the NOISEX-92

database [8], presented in Table 1.

NOISE

TYPES

White

Pink

Speech Babble

Tank

Military Vehicle

Car Interior

Destroyer Engine Room

Destroyer Operations Room

F16 Cockpit

Factory Floor 1

Factory Floor 2

High Frequency

Machine Gun

Jet Cockpit 1

Jet Cockpit 2

Table 1: NOISEX-92 noise types used in our experiments

Given a test signal corrupted by noise, we determine which

noise model matches it by calculating the KL distances between

the test signal histogram P and those in our training histogram

dataset Q:

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
(2)

Then we do a majority voting on the 30 shortest distances. The

result of the majority voting determines the appropriate noise

model. In practice, this is a K-nearest neighbour algorithm

where the data points are histograms, and the distance is the

KL divergence.

We assume that the noise in the test signal did not appear

in our training set. Thus, we simulate unknown noise condi-

tions by excluding the noise that is in the test signal from the

model selection process (e.g. if the signal is corrupted by pink

noise we exclude it from the selection process). Notice that this

model selection approach is different than a traditional pattern

classification task, since the test signal is corrupted by a noise

that does not exist in our noise dataset.

Once the model is selected we employ NMF to denoise the

signal. In [9], different NMF objective functions are explored,

which lead to different NMF variants. Generalized KL diver-

gence (GKL), denoted as DGKL(·||·), has been successfully

used for audio source separation in [10]. Hence in our exper-

iments we will use the GKL variant of NMF, which leads to the

minimization of the objective function:

DGKL(V ||WH) =
∑

lr

(

Vlr log
Vlr

(WH)lr

− Vlr + (WH)lr
)

(3)

In the training phase we used NMF on clean speech spec-

trograms1 Vs to find a speech dictionary Ws and the time ac-

tivations Hs. Similarly, we calculated spectrograms Vni
with

i = 1 . . . 15 for the fifteen types of noise of Table 1, to find

noise dictionaries Wni
. Matrices Ws, Wni

have dimensionality

nf × nb. In our experiments we used nf = 513 and nb = 80,

which are values commonly used in literature (e.g. [4], [3]).

Each column of the dictionaries Ws, {Wni
}15i=1 is a ba-

sis vector and represents a specific spectral “building block” of

their respective signals. On the other hand, the matrices Hs,

{Hni
}15i=1 represent the time-varying activation levels of the ba-

sis vectors. To estimate Ws and Hs we used 1120 utterances of

male speakers and 560 utterances of female speakers from the

TIMIT database, while for Wni
and Hni

we used noise signals

whose durations are approximately 3 minutes.

In the testing phase, we fix Ws assuming that its basis vec-

tors accurately describe speech. However, since we do not have

prior knowledge about the type of noise, n′, that corrupts the

signal, we cannot use Wn′ to describe its characteristics. In-

stead, we choose a noise n′′ using the LTSV model selection

process, and then use the corresponding noise dictionary Wn′′ .

We expect that Wn′′ will provide a good representation of the

noise that corrupts the test signal. Once Wn′′ is chosen we form

a “complete” dictionary Wc = [Ws Wn′′ ] whose basis func-

tions will be used to represent the test speech signal, which is

corrupted by an unknown type of noise.

Afterwards, we compute the spectrogram Vt of the test sig-

nal. Having at our disposal Wc and Vt the goal is to find Ht by

minimizing the objective function DGKL(Vt||WcHt) given by

equation (3). The multiplicative update rule for Ht is given by:

Htij ←− Htij

∑

k
Wcki

Vtkj
/(WcHt)ij

[
∑

r Wcri

]

ǫ

(4)

where [ ]ǫ indicates that if the quantity within the brackets is less

than ǫ > 0 then it will be replaced with ǫ to prevent violations

of the nonnegativity constraint and avoid divisions by zero.

Finally, we reconstruct the denoised spectrogram as V̂s =
WsHt1:nb

, using the speech basis functions, along with the first

nb rows of Ht to approximate the target speech.

3. Method Using Combined Noise
Dictionary

The second system we implemented uses a combined noise

dictionary. In the training phase, we perform NMF on the

speech and noise types separately. The goal is to minimize both

DGKL(Vs||WsHs) and DGKL(Vni
||Wni

Hni
), where i is the

noise type index.

1Speech dictionaries created through NMF are usually gender de-
pendent ([3]) or even speaker dependent ([11]). We followed a gender
dependent approach. We keep the notation Vs, Ws, Hs for notation
convenience, but the reader should keep in mind that they are gender
dependent.
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Figure 1: PESQ score improvements of the system for a variety of noise types under different SNR levels. Red depicts the performance

of the LSTV system, yellow the performance of the combined dictionary system, while blue stands for the performance when we use

the “true” noise model.

In the testing phase, Ws is again fixed. However, in this

system we do not choose an noise dictionary. Instead we form

a noise dictionary Wa = [W1 W2 . . . Wk] based on all the

k available noise types. To simulate unknown noise conditions

Wa does not contain the dictionary corresponding to the noise

type corrupting the signal. For example, if it is pink noise that

corrupts the signal, then Wa will not contain Wpink.

The intuition behind this approach is that the atoms of Wa

will compensate for the missing atoms corresponding to the

noise type that actually corrupts the signal. Of course for this

approach to work, Wa should be created in a way that will con-

tain similar types of noises to the one that corrupts the signal.

Hence, when creating Wa one must include a variety of noise

types so that Wa represents a wide range of noises.

To denoise the signal we follow the approach described in

the previous section, we compute the spectrogram Vt of the test

signal, we form Wc as Wc = [Ws Wa], and we minimize

the the objective function DGKL(Vt||WcHt) given by (3), in

order to find to find Ht. Finally, we reconstruct the denoised

spectrogram V̂s = WsHt1:nb
to approximate the target speech.

4. Results and Discussion

To test the performance of our system we used 50 utterances

of male speakers and 50 utterance of female speakers from the

TIMIT database. Based on those utterances we created our test

dataset by introducing different types of noise at five SNR lev-

els, from -5 dB to 15 dB with a step of 5 dB. As a result, we have
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250 male and 250 female noisy files for every type of noise (50

per SNR level).

We followed a leave-one-out cross-validation approach to

simulate unknown noise conditions. For example, if the test

signal was corrupted by white noise then we remove the LTSV

histograms corresponding to white noise from the first system,

while in the second system the combined noise dictionary, Wa,

does not contain atoms from white noise.

To quantify our results we used the ITU Perceptual Eval-

uation of Speech Quality (PESQ) [12], a metric designed to

match mean opinion scores of audio perceptual quality. Higher

PESQ scores indicate better signal quality, and PESQ incre-

ments of the order of 0.5 offer noticeable improvements in terms

of speech intelligibility [3].

In Fig. 1, we present average PESQ improvements for six

different types of noise. We notice that for all the noise types

and across all SNR levels, both our systems improve the signal

quality. We observe that in many cases the LTSV system gives

comparable results with the “oracle” system that uses the true

noise type, especially in low SNR levels. However, in the case

of Machine Gun noise the LTSV system falls behind compared

to the oracle model because the noise pool does not contain sim-

ilar noise types. Limited availability of diverse noise types can

be a severe drawback to our system, since it relies on a large

pool of noise models to be able to select one that closely re-

sembles the noise that corrupts the signal. On the other hand,

the system that uses a combined noise dictionary is able to out-

perform the oracle system in most cases. This reinforces our

assumption that the atoms of the combined dictionary compen-

sate for the missing atoms of the noise that corrupts the signal.

This is clearly demonstrated in the factory floor cases, as well

as in babble speech case. However, this system fails when the

combined dictionary does not contain similar noise types with

those corrupting the signal, as is showcased in the Machine Gun

case, in which case the LTSV system performs slightly better.

We observe a similar pattern in Car Interior noise, with the dif-

ference that the systems do not fail since there are similar noise

types in the noise pool. This phenomenon warrants further in-

vestigation for a system that would use a method to guide the

creation of the combined dictionary.

5. Conclusions and Future Work

In this paper we presented two systems that perform speech de-

noising under unknown noise conditions. In contrast to other

state-of-the-art denoising algorithms, our systems does not re-

quire prior estimates or knowledge about the noise conditions

like those in [1], [2]. Moreover, we do not make assumptions

about the type of noise that corrupts the signal and generalizes

to unknown types of noise.

We tested both the systems for various noise types with

different statistical properties across different SNR levels, and

demonstrated that it improves signal quality (as measured by

PESQ scores) consistently. The performance of the system

warrants further theoretical and empirical investigation that can

help formalize the design.

To improve upon this work, we need to add additional fea-

tures that will be able to capture noise characteristics, add an

SNR estimation step to improve model selection at different

SNR levels, and investigate other schemes that will match the

test signal with the appropriate model (e.g. cross-entropy tech-

niques, Deep Neural Networks, etc). At the denoising stage,

we can employ more sophisticated NMF variations, incorporate

temporal dynamics, add wavelet packet analysis [13], and in-

corporate additional knowledge, such as gender-specific mod-

els. Furthermore, we should investigate which atoms in the

combined dictionary boost the performance, and combine our

first system with the second to select those atoms. Finally, we

should investigate how the noise model selection process can

provide information to other denoising algorithms to operate in

unknown noise conditions.
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