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Abstract
Conversational partners can influence each other’s speaking pat-
terns. In this paper, we aim to develop a computational model
that infers influence levels directly from language samples. We
propose a new approach to modeling linguistic influence in con-
versations based on a well-accepted model of social influence.
Very generally, this approach assumes that an individual’s lan-
guage model can be expressed as a convex combination of lan-
guage models from individuals with whom that person interacts.
We propose an optimization criterion to estimate the pairwise
influence between conversational partners directly from speech
and language data. We evaluate the model on three different
corpora: (1) a synthetic corpus where the language influence is
experimentally set; (2) a corpus that tracks a child’s interaction
with her family during the early stages of language develop-
ment; (3) a corpus of Supreme Court cases analyzing interac-
tions between judges and attorneys.

Index Terms: linguistic influence, language accommodation,
communication accommodation, convex modeling, social influ-
ence, De Groot’s model

1. Introduction
Communication accommodation refers to the phenomenon that
conversational partners converge to one another in communica-
tive behavior [1]. Synchrony between partners is observed in
word choice, acoustic parameters (e.g. pitch, energy), seman-
tic patterns, etc [1, 2, 3]. This model has been confirmed by
many controlled laboratory studies and a few social network
studies analyzing evolving linguistic trends [1, 2, 3]; however to
date limited work has been done on computational models that
can characterize the influence exhibited by conversing speakers.
Such a model is of great interest since linguistic accommoda-
tion plays an important role in a variety of fields, including in-
tercultural communication [4], child development [5], human-
computer dialog systems [6], etc. In this paper, our aim is to de-
velop a new method for analyzing this important phenomenon
in order to gain deeper insight in how social interactions develop
in different settings.

The existing body of literature strongly suggests that lin-
guistic accommodation is a stable and common component in
speech [7, 8, 9, 10, 11, 12, 13, 14, 4, 15, 16, 17, 18]. How-
ever, the bulk of this work, conducted in laboratory settings,
relies upon shadowing and other repetition tasks using only au-
ditory stimuli. Research using actual conversation tasks has
been largely restricted to conversational dyads [19, 20]. Yet,
one could argue that most linguistic encounters occur in multi-
speaker group conversational settings, where individual speak-
ers’ varying motivations and influence create a complex, multi-

variable interaction. The existing body of work modeling these
interactions has been much more limited [2, 3, 21, 22, 23] and
not always applied to group conversations [24]. Exemplary of
this body of research is the work by Danescu-Niculescu-Mizil,
et al [3], which which focuses on specific linguistic style mark-
ers (e.g. articles, auxiliary verbs, etc.) and analyzes pairwise
changes in the probability of using a word belonging to one
of these categories, given another speaker’s previous use of the
same marker. More recently, Guo et al [2], proposed a Bayesian
model of linguistic influence where they learn the parameters
using Markov Chain Monte Carlo (MCMC), and evaluated it
on group conversations.

The emerging field of language dynamics also provides im-
portant prior art related to language change and evolution. A
number of researchers have proposed meta-theoretical models
of language change motivated by population genetics and by
Social Impact Theory [25, 26]. However, these models often re-
quire knowledge of latent variables not typically available dur-
ing analysis (e.g. difference in social status between speakers)
and aim to characterize long-term changes in language and not
what is influencing these changes.

Motivated by recent models of social influence [27], in this
paper we propose a general computational model that tracks lin-
guistic influence in conversations in order to identify a linguistic
influence matrix (LIM) - a matrix that describes the relative in-
fluence between any pair of participants in a conversation. In
contrast to the work in [3] that focuses on specific linguistic
style markers, our model is based on De Groot’s model of social
influence [28], originally proposed to interpret the convergence
of opinions and the wisdom of crowds [28, 29].

Briefly, in accordance with De Groot’s model, the proposed
approach for linguistic influence assumes that an individual’s
language model at time t+1 is shaped by other participants’ lan-
guage models in the past using a convex model. The coefficients
of this model determine the level of influence that a speaker has
on another speaker. As we will show, this reduces the problem
of influence to one of inferring mixture coefficients in a proba-
bilistic mixture model. To that end, we propose an optimization
criterion for solving for these coefficients directly from care-
fully transcribed conversational data. This is in contrast to the
work by Guo [2], where the resulting optimization criteria is
complicated and requires MCMC methods for estimation. We
evaluate our computational model on three different examples:
(1) a synthetic example where the influence is pre-defined by the
experimenter; (2) longitudinal conversational samples between
a child and other members of the family where we study which
members of the family have the greatest level of influence on the
child’s language; (3) a collection of transcribed Supreme Court
cases where we study relative differences in influence between
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Supreme Court justices and lawyers.

The rest of this paper is organized as follows: In the en-
suing section we provide a general overview of the model and
describe an optimization criterion for inferring the LIM. In sec-
tion 3, we describe in detail the three experiments we use to val-
idate the proposed model. In section 4, we end with concluding
remarks and a description of future work.

2. Proposed Method
2.1. General overview of the model

De Groot’s model of social influence states that group opinions
can be modeled as convex combinations of individual opinions
[28]. We adopt a similar assumption for evolving language
models. That is, our model assumes that in a conversation
evolving between M participants, a speaker’s language model
is a convex combination of the language models of the individ-
uals with whom that person interacts.

Figure 1 illustrates a sample conversation timeline for a set
of M users. For each speaker i (i ∈ [1...M ]), the conversation
is split into a set of T epochs. For the remainder of this paper,
we define the epoch for speaker i as the period of time between
when the speaker starts speaking until the next time he or she
speaks. In Figure 1, the timeline for speaker 1 is shown; as a
result, the first epoch ends and the second epoch begins when
speaker 1 starts speaking. We denote the probabilistic language

model of speaker i during epoch t by L
(t)
i .

In accordance to De Groot’s model of influence, a speaker’s
language model at (t+ 1) is influenced by the language model
of the previous epoch in the conversation. For our model we

assume that L
(t+1)
i is a mixture model of the language models

of other speakers during epoch t,

L
(t+1)
i =

∑
j∈E(t)

i

WijL
(t)
j +WiiLi, (1)

where E(t)i is the subset of speakers that spoke during epoch
t, Wij is the influence coefficient that describes the probabil-
ity that speaker i will imitate (be influenced by) the language
of speaker j, Li is the default (time-independent) language
model for speaker i, and Wii is the influence of this model
on the language model used at time t + 1. The value Wij is
the ith column and jth row entry of the M ×M linguistic in-
fluence matrix (LIM), W, that describes the pairwise influence
between two speakers in a conversation. The LIM coefficients
are all non-negative entries and the sum of each row is 1 (i.e.∑M

j=1 Wij = 1).

2.2. Learning the Language model

The model above requires an estimate of the probabilistic lan-
guage model for each participant during each epoch in a conver-
sation. These could be unigram, trigram, or polygram models
inferred from the text data. For shorter texts these could also
be probabilistic features learned using semantic processing and
linguistic style markers [30]. Such feature models are especially
useful for corpora with sparse data (e.g. twitter conversations)
[3]. For larger corpora, these models could by based on deep
networks [31].

For the remainder of this work, for simplicity, we use a

simple unigram model of L
(t)
i . We assume the domain of the

unigram model is the vocabulary V = {w1, . . . , wV } which
in the following will be addressed simply with the numbers
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Figure 1: A conversational timeline depicting an interaction be-
tween M speakers

v = 1, . . . , V . Given a specific corpus, we can estimate a
probabilistic language model for each speaker at each time t,

L
(t)
i (v) = P (wv|i; t), for each word wv ∈ V , and speaker

i = 1, . . . ,M . Given the text from epoch t for speaker i, we
can estimate L(t) as

L̂
(t)
i (v) =

F
(t)
i (v)∑

v F
(t)
i (v)

, (2)

where L̂
(t)
i is the estimate of the true language model L

(t)
i and

F
(t)
i (v) is the frequency of the word wv for speaker i during

epoch t.

In eqn. (1), we make a distinction between the time-varying
language models of the participants in a conversation and the
default language model for speaker i. For the experiments in
this paper, we estimate speaker i’s default model using the com-
plete corpus. That is, we estimate the normalized frequency of
each word for speaker i for the duration of the conversation,

L̂i(v) =

∑T
t=1 F

(t)
i (v)∑T

t=1

∑
v F

(t)
i (v)

. (3)

It is important to note that it isn’t necessary to estimate the
default model from the same corpus from which we estimate the
LIM coefficients. In fact, it may be advantageous to estimate
default models using many large and varying language samples
from the person in different settings.

2.3. Solving for the influence coefficients

After estimating the language model for each participant during
each epoch, we can construct an optimization criterion for esti-
mating the individual entries of the LIM for a particular speaker
i, Wi1 . . .WiM , using the model from eqn. (1). Specifically, we
assume that the estimated unigram language model for speaker i
at time t+1 can be expressed as a mixture of unigram language
models from other speakers and speaker i’s default language
model. The magnitude of the mixture coefficients serve as an
estimate of the influence that various conversational partners
have on speaker i. This influence can be compared against the
user’s preference for his or her default language model (Wii).

The optimization criterion to solve for the LIM entries is

1443



200 400 600 800 1000
Number of Unique Words

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
ve

ra
ge

 E
rr

or
 o

f L
IM

 e
nt

ry

100 turns
200 turns
300 turns
400 turns
500 turns
random LIM

Figure 2: Average RMSE LIM entry error for different number
of speaking turns and vocabulary size.

given by:

minimize
Wi1...WiM

T−1∑
t=1

∣∣∣∣∣∣ ∑
j∈E(t)

i

WijL̂
(t)
j +WiiL̂i − L̂

(t+1)
i

∣∣∣∣∣∣
2

subject to

M∑
j=1

Wij = 1, (4)

Wij ≥ 0, i = 1, . . . ,M.

where E
(t)
i represents the subset of speakers that spoke during

speaker i’s tth epoch. The convex criterion finds the best fit pa-
rameters to eqn. (1) subject to the constraints that the weights
sum to one and are non-negative. The error in the fitting rou-
tine is measured by the �2 norm. We do this for simplicity
here; however, since we are comparing two probability mass
functions, any divergence measure between distributions can be
used. For example, we can replace the �2 norm of the error
with the Kullback-Leibler divergence or the data-driven Dp di-
vergence [32, 33] between the model at t + 1 and the mixture
model from eqn. (1). Since we use the �2 norm in this paper,
the resulting optimization problem is convex and we can use the
CVX package to solve for the LIM coefficients [34].

The solution to (4) represents a single row of the LIM (the
row corresponding to speaker i); thus to solve for all values of
LIM the optimization in criterion (4) must be solved individu-
ally for each speaker. By analyzing differences between LIM
coefficients, we can compare the relative levels of influence on
speaker i’s language model from other speakers, and how these
compare to speaker i’s preference for his or her default language
model.

3. Experiments and Results
3.1. Experiment 1: Academic Example

Experiment design: In order to show validity of our method
we simulated a synthetic example of a conversation between
6 speakers based on a randomly generated 6 × 6 LIM. Each
speaker is initialized with a default unigram model from a do-
main containing V words. The probabilities for the unigram
model are drawn from a Poisson distribution, with 5% of the
entries randomly set to zero to ensure diversity in the vocabu-
lary of each speaker.

We run the simulation for T conversational turns where,
for each turn, a speaker will generate 100-200 words1 based

1Based on statistics found in the court transcripts in Experiment 3

Figure 3: Sample actual and estimated LIM values for (V =
1000, T = 200)

on a linear combination of language models as in eqn. (1).
That is, the mixture model in eqn. (1) is used to draw the
words for speaker i’s tth turn, where the mixture coefficients
are random, but known to the experimenter. The purpose of
the experiment is to infer the LIM coefficients using the pro-
posed algorithm from only the text data. We ran the experi-
ment with varying V (V = [200, 400, 600, 800, 1000]) and T
(T = [100, 200, 300, 400, 500]) with 30 Monte-Carlo trials per
combination.

We can determine how well the algorithm infers the in-
fluence dynamics of each speaker by analyzing the root mean
squared error between the known LIM and the LIM estimated
by our algorithm,

e =

√√√√ 1

M2

M∑
i

M∑
j

(Ŵij −Wij)2, (5)

where Ŵij is the estimate of Wij .

Results: Figure 2 shows the average error found for different
values of parameters described in the setup. The figure shows
that the accuracy of the algorithm improves for larger vocabu-
lary size and for longer conversations. The figure also shows
the average error value for random LIMs compared with the
true LIMs as a benchmark for the performance of our model.
From this we see that only for conversation of 100 turns and 200
unique words does our model fare worst than random chance,
however for the real world conversations we analyzed in this
study (see next sections), their parameters fall in the range that
yield a significant improvement over random chance. In Figure
3 we show the estimated LIM and the actual LIM for a sam-
ple conversation with 6 speakers, 200 turns, 100-200 words per
turn, and 1000 unique words. These parameters are chosen to
mimic those found in the supreme court transcripts discussed in
later section.

3.2. Experiment 2: Early Development Corpus

Experiment design: We evaluate the model on a language de-
velopment corpus of 700 transcripts of a single child conversing
with her family during early development age (approximately
ages 2 - 3.5) [5]. Approximately one transcript per day was
recorded and each transcript contains on average 200 lines of di-
alog between the child and family members. In this experiment,
for each transcript, the linguistic influence of the family mem-
bers on the child’s vocabulary is estimated using our model. By
analyzing how the LIM coefficients associated with each family
member’s influence we can see how influence of each member
changes over time.

Results: For each transcript that contains an interaction be-
tween the child and at least one other member of the family,
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Figure 4: Running average influence of family member

we calculate the influence of the family member on the child’s
vocabulary using the algorithm proposed in this paper. In Fig-
ure 4 we show the running average estimate of the influence
coefficients for the duration of the period. From the figure, we
can interpret that by age 3 the child’s default language model
(dark gray) contributes to two-third of her word choices, fol-
lowed second by the mother’s language model (light gray), fol-
lowed by the sister (black) and the father (medium gray). The
time-varying nature of this influence is interesting to note; ini-
tially the child’s speech seemed to be dictated mostly by her
sister’s and mother’s language models; however as time goes
on she seems to develop her own individual language model
distinct from her family. A number of studies in child develop-
ment have shown similar patterns: 1) children are more likely to
repeat words during early stages of language development and
2) the mother has the largest influence on language development
in children [35].

By analyzing the data it is clear that the mother has the
largest number of interactions with the child. As a result, it’s
unclear from the data whether her influence is driven by the fact
that the child and the mother interact more or whether the child
is inherently more influenced by the mother. To answer this
question, we only analyze the subset of transcripts where all
four family members are present. Unfortunately, this reduces
the data from 700 transcripts to 90 transcripts; therefore the re-
sulting analysis is rather coarse. In Figure 5 we see that the in-
fluence levels even out and, in fact, the mother’s contribution is
reduced significantly. This result suggests that linguistic influ-
ence is, to an extent, dependent on length of interaction between
communicating parties.

3.3. Experiment 3: Supreme Court Cases

Experiment design: In this experiment we analyzed a corpus
of 94 U.S. Supreme Court oral argument transcripts for cases
between 2000 - 2001. The documents were found on the of-
ficial U.S. Supreme Court website [36]. Due to variability in
the transcription methodology, we simplified the transcripts by
grouping each speaker into one of three categories: judge, de-
fendant, or prosecutor. The 3 × 3 LIM is calculated for each
transcript; the total influence of each group is based on the sum
of the columns of the LIM. This allows us to estimate the aver-
age influence of one of the parties on the remaining two parties
for all 94 transcripts.

Results: Figure 6 shows the average influence of each of the
three groups on the remaining group (with 1−σ error bars). The

Figure 5: Running average influence of family member (all
members present)
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Figure 6: Influence in Supreme Court (2000-2001)

analysis reveals that Supreme Court justices have the largest
influence on the remaining parties, followed by the defendant
and prosecution. A two-samples t-tests reveals a statistically
significant difference between the average influence of judges
(μ = 0.333, σ = 0.060) and the average influence of prose-
cutors (μ = 0.224, σ = 0.062) with p < 0.0001. Similarly
the average influence of judges was also different than the influ-
ence of defendants (μ = 0.240, σ = 0.022) with p < 0.0001.
These results are consistent with the work of Niculescu-Mizil,
et al. which concluded that there is significantly more accom-
modation by the attorneys to the judges than vice-versa [21].

4. Conclusions
We present a new computational model to quantify linguistic
influence between speakers in group conversations. The new
model is based on an existing model of social influence - De
Groot’s convex model for opinion fusion. Based on this model
we proposed an optimization criterion that is computationally
simple to solve and versatile to model data from different ap-
plications. We evaluated this model on three data sets and com-
pared the results of the model to other results from the literature.

Future work will focus on using other divergence measures
for calculating the distance between language models. Further-
more, we will also explore methods for joint estimation of the
influence matrix and the language model. In addition, while we
focus on text data in this application, the approach can also be
extended to modeling acoustic data (e.g. for modeling prosodic

influence). In that case, L
(t)
i could be a probability density func-

tion of features that measure an acoustic feature of interest (e.g.
pitch, speaking rate, etc.).
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