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Abstract
Formant frequency estimation and tracking are among the most
fundamental problems in speech processing. In the former task
the input is a stationary speech segment such as the middle part
of a vowel and the goal is to estimate the formant frequencies,
whereas in the latter task the input is a series of speech frames
and the goal is to track the trajectory of the formant frequen-
cies throughout the signal. Traditionally, formant estimation
and tracking is done using ad-hoc signal processing methods.
In this paper we propose using machine learning techniques
trained on an annotated corpus of read speech for these tasks.
Our feature set is composed of LPC-based cepstral coefficients
with a range of model orders and pitch-synchronous cepstral co-
efficients. Two deep network architectures are used as learning
algorithms: a deep feed-forward network for the estimation task
and a recurrent neural network for the tracking task. The per-
formance of our methods compares favorably with mainstream
LPC-based implementations and state-of-the-art tracking algo-
rithms.
Index Terms: formant estimation, formant tracking, deep neu-
ral networks, recurrent neural networks

1. Introduction
Formants are considered to be resonances of the vocal tract dur-
ing speech production. There are 3 to 5 formants, each at a
different frequency, roughly one in each 1 kHz band. They play
a key role in the perception of speech and they are useful in
the coding, synthesis and enhancement of speech, as they can
express important aspects of the signal using a very limited set
of parameters [1]. An accurate estimate of these frequencies
is also desired in many phonological experiments in the fields
of laboratory phonology, sociolinguistics, and bilingualism (see
examples [2, 3]).

The problem of formant estimation has received consider-
able attention in speech recognition research as formant fre-
quencies are known to be important in determining the phonetic
content as well as articulatory information about the speech sig-
nal. They can either be used as additional acoustic features or
can be utilized as hidden dynamic variables as part of the speech
recognition model [4].

The formant frequencies approximately correspond to the
peaks of the spectrum of the vocal tract. These peaks cannot
be easily extracted from the spectrum, since the spectrum is
also tainted with pitch harmonics. Most commonly, the spec-
tral envelope is estimated using a time-invariant all-pole linear
system, and the formants are estimated by finding the peaks of
the spectral envelope [1, 5]. While this method is very simple
and efficient it lacks the accuracy required by some systems.

Most algorithms for tracking are based on traditional peak
picking from Linear Predictive Coding (LPC) spectral analy-
sis or cross-channel correlation methods coupled with conti-

nuity constraints [1, 5, 6]. More elaborate methods used dy-
namic programming and HMMs to force continuity [7, 8, 9].
Other algorithms for formant tracking are based on Kalman fil-
tering [10, 11] and extended in [12]. Other authors [13, 14]
have used autocorrelation sequence for representing speech in
a noisy speech recognition system and [15, 16, 17] use LPC of
the zero phase version of the signal and the peaks of its group
delay function.

Recently a publicly available corpus of manually-annotated
formant frequencies of read speech was released [18]. The cor-
pus is based on the TIMIT corpus, and includes around 30 min
of transcribed read speech. The release of this database enables
researchers to develop and evaluate new algorithms for formant
estimation.

In this paper we present a method called DeepFormants
for estimating and tracking formant frequencies using deep net-
works trained on the aforementioned annotated corpus. In the
task of formant estimation the input is a stationary speech seg-
ment (such as the middle of a vowel) and the goal is to estimate
the first 3 formants. In the task of formant tracking the input
is a sequence of speech frames and the goal is to predict the
sequence of the first 3 formants corresponding to the input se-
quence. In both tasks the signal is represented using two sets
of acoustic features. The first set is composed of LPC cepstral
coefficients extracted from a range of LPC model orders, while
the second set is composed of cepstral coefficients derived from
quasi-pitch-synchronous spectrum.

We use a feed-forward network architecture for the task of
estimation and a recurrent neural network architecture for the
task of tracking. RNN is a type of neural network that is a
powerful sequence learner. In particular, the Long Short-Term
Memory (LSTM) architecture has shown to provide excellent
modeling of sequential data such as speech [19].

The paper is organized as follows. The next section de-
scribes the two sets of features. Section 3 presents the deep
network architectures for each tasks. Section 4 evaluates the
proposed method by comparing it to state of the art LPC imple-
mentations, namely WaveSurfer [20] and Praat [21], and to two
state of the art tracking algorithms: MSR [10] and KARMA
[12]. We conclude the paper in Section 5.

2. Acoustic Features
A key assumption is that in the task of estimation the whole seg-
ment is considered stationary, which mainly holds for monoph-
thongs (pure vowels). In the task of tracking, the speech signal
is considered stationary over roughly a couple dozen millisec-
onds. In the former case the features are extracted from the
whole segment, while in the latter case the input signal is di-
vided into frames, and the acoustic features are extracted from
each frame. The spacing between frames is 10 msec, and frames
are overlapping with analysis windows of 30 msec. As with
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Figure 1: LPC spectrum of the vowel /uw/ produced for 262
msec for values of p 8,10,12,14,16, and 18.

all processing with this type, we apply a pre-emphasis filter,
H(z) = 1 − 0.97 z−1, to the input speech signal, and a Ham-
ming window to each frame.

At this phase, two sets of spectral features are extracted.
The goal of each of the sets is to parametrize the envelop of
the short-time Fourier transform (STFT). The first set is based
on Linear Predictive Coding (LPC) analysis, while the second
is based on the pitch-synchronous spectra. We now describe in
detail and motivate each set of features.

2.1. LPC-based features

LPC model determines the coefficients of a forward linear pre-
dictor by minimizing the prediction error in the least squares
sense.

Consider a frame of speech of length N denoted by s̄ =
(s1, . . . , sN ), where sn the n-th sample. The LPC model as-
sumes that the speech signal can be approximated as a linear
combination of the past p samples:

ŝn =

p∑
k=1

aksn−k (1)

where a = (a1, . . . , ap) is a vector of p coefficients. The values
of the coefficients a are estimated so as to minimize the mean
square error between the signal s̄ and the predicted signal ŝ =
(ŝ1, . . . , ŝN ),

a = arg min
a

1

N

N∑
n=1

(sn − ŝn)2. (2)

Plugging Eq. (1) into Eq. (2), this optimization problem can be
solved by a linear equation system.

The spectrum of the LPC model can be interpreted as the
envelop of the speech spectrum. The model order p determines
how smooth the spectral envelop will be. Low values of p rep-
resent the coarse properties of the spectrum, and as p increases,
more of the detailed properties are preserved. Beyond some
value of p, the details of the spectrum do not reflect only the
spectral resonances of the sound, but also the pitch and some
noise. Figure 1 illustrates this concept, by showing the spec-
trum of the all-pole filter with values of p ranging from 8 to 18.
A disadvantage of this method is that if p is not well chosen (i.e.,

Figure 2: Quasi pitch-synchronous sepctra of the vowel /uw/
produced for 262 msec with different values of pitch. The true
value of the pitch was 123.4 frames.

to match the number of resonance present in the speech), then
the resulted LPC spectrum is not as accurate as desired [22].

Our first set of acoustic features are based on the LPC
model. Instead of using a single value of the number of LPC
coefficients, we used a range of values between 8 and 17. This
way the classifier can combine or filter out information from
different model resolutions. More specifically, in our setting
after applying pre-emphasize and windowing, the LPC coeffi-
cients for each value of p were extracted using the autocorre-
lation method, where the Levinson-Durbin recursion was used
for the autocorrelation matrix inversion, and the FFT for the au-
tocorrelation computation.

The final processing stage is to convert the LPC spectra to
cepstral coefficients. This is done efficiently by the method pro-
posed in [23]. Denoted by c = (c1, . . . , cn) is the vector of the
cepstral coefficients where n > p:

cm =


am +

m−1∑
k=1

(
1− k

m

)
akcm−k 1 ≤ m ≤ p

p∑
k=1

(
1− k

m

)
akcm−k p < m ≤ n

.

We tried different values for n and found that n = 30 gave
reasonable results.

2.2. Pitch-synchronous spectrum-based features

The spectrum of a periodic speech signal is known to exhibit a
impulse train structure located at multiples of the pitch period.
A major concern when using the spectrum directly for locating
the formants is that the resonance peaks might fall between two
pitch lines, and then they are not “visible”. The LPC model esti-
mates the spectrum envelop to overcome this problem. Another
method to estimate the spectrum while eliminating the pitch im-
pulse train is using the pitch synchronous spectrum [24]. Ac-
cording to this method the DFT is taken over frames the size of
the instantaneous pitch.

One of the main problem of this method is the need of a very
accurate pitch estimator. Another issue is how to implement the
method in the case of formant estimation, when the input is a
speech segment that represents a single vowel, which typically
spans a few pitch periods, and the pitch in not fixed along the
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segment. We found out that using a pitch period which is close
enough to its exact value is good enough in our application. This
can be observed in Figure 2, where the quasi pitch-synchronous
FFT for different values of pitch periods are depicted. It can be
seen that except for extreme cases, the peaks of the spectrums
are well-smoothed and clearly defined.

In out implementation we extract quasi-pitch synchronous
spectrum similar to [24]. For the task of formant estimation we
use the median pitch computed in frames of 10 msec along the
input segment, and use the average spectra.

At the final stage, the resulting quasi pitch-synchronous
spectrum is converted to cepstral coefficients by applying log
compression and then Discrete Cosine transform (DCT). We
use the first 100 DCT coefficients as our second set of features.

3. Deep Learning Architectures
In this section we describe the two network architectures that
are used for formant estimation and formant tracking. In the
former the input is a speech segment representing a single vowel
and the goal is to extract the first three formants, and in the latter
the input is a series of speech frames and the goal is to extract
the corresponding series of values of the first three formants.

3.1. Network architecture for estimation

The method chosen to classify the data was a standard feed for-
ward neural network. The the input of the network is a vec-
tor of 400 features (30 DCT features for each of the 10 LPC
model sizes plus 100 features of the quasi pitch-synchronous
spectrum), and the output is a vector of the three annotated for-
mants.

The network has three hidden layers with 1024, 512 and
256 neurons respectively and all of them are fully connected.
The activations for said layers are sigmoid functions. The net-
work was trained using adagrad [25] to minimize the mean ab-
solute error or the absolute difference between the predicted and
true formant frequencies with weights randomly initialized. The
training of the networks weights was done as regression rather
than classification. The network predicts all 3 formants simul-
taneously to exploit interformant constraints.

3.2. Network architecture for tracking

For tracking we use a Recurrent Neural Network (RNN) con-
sisting of an input layer with 400 features as in the estimation
task. In addition to these features extracted from the current
segment of speech on account of the fact that this is an RNN
the predictions and features of the previous speech segment
(i.e. temporal context) are taken into account when predicting
the current segments formants. Next are two Long Short Term
Memory (LSTM) [26] layers with 512 and 256 neurons respec-
tively, a time distributed fully connected layer with 256 neurons
and an output layer consisting of the 3 formant frequencies. As
in the estimation network the activations were all sigmoid, the
optimizer was adagrad and the function to minimize was mean
absolute error.

4. Evaluation
For the training and validating our model we used the Vocal
Tract Resonance (VTR) corpus [18]. This corpus is composed
of 538 utterances selected as a representative subset of the well-
known and widely-used TIMIT corpus. These were split into
346 utterances for the training set and 192 utterances for the

test set. These utterances were manually annotated for the first
3 formants and their bandwidths for every 10 msec frame. The
fourth formant was annotated by the automatic tracking algo-
rithm described in [10], and it is not used here for evaluation.

4.1. Estimation

We will begin by presenting the results for our estimation al-
gorithm. The estimation algorithm applies only to vowels
(monophthongs and diphthongs). We used the whole vowel seg-
ments of the VTR corpus. Their corresponding annotation were
taken to be the average formants along the segments.

Table 1 shows the influence of our different feature sets.
The loss is the mean absolute difference between predicted val-
ues and their manually annotated counterparts measured in Hz.
It can be seen that using different LPC model orders improves
the performance on F2 and F3, and the performance on F1 im-
proves with the quasi-pitch-synchronous feature set.

Table 1: The influence of different feature sets on the estimation
of formant frequencies of whole vowels using deep learning.

Feature set F1 F2 F3

LPC, p = 12 59 123 179
LPC, p = {8− 17} 60 86 110
quasi-pitch-sync 51 115 164
LPC, p = {8− 17} + quasi-pitch-sync 48 83 109

As a baseline we compared our results to those of Praat, a
popular tool in phonetic research [21]. Formants were extracted
from Praat using Burg’s method with a maximum formant value
of 5.5 kHz, a window length of 30 msec and a pre-emphasis
from 50 Hz. The results of our system and of Praat’s on the
test set are shown in Table 2, where the loss is the mean abso-
lute difference in Hz. As seen in the table, we have achieved
better results across the board over Praat when comparing our
respective estimations to the manually annotated reference.

Table 2: Estimation of formant frequencies of whole vowels us-
ing deep learning and Praat.

Method F1 F2 F3

Mean DeepFormants 48 83 109
Praat 75 115 151

Median DeepFormants 38 62 75
Praat 48 78 88

Max DeepFormants 528 716 1509
Praat 1611 1711 1633

In addition, the observed mean differences between our au-
tomated measurements and the manually annotated measure-
ments are comparable in size to the generally-acknowledged un-
certainty in formant frequency estimation demonstrated on our
dataset by the degree of inconsistency between different labelers
in Table 3 and to the perceptual difference limens found in [27].
Such that it is doubtful that higher accuracy can be achieved
with automated tools seeing as manual annotation cannot.

Analysis of the predictions with the largest inaccuracies
show that they broadly fall into 3 categories, either they are
annotation errors and the system indeed did classify them accu-
rately, the vowel segment was very short (less than 35 ms) and
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Table 3: Tracking errors of on broad phone classes measured by mean absolute difference in Hz.

inter-labler WaveSurfer Praat MSR [10] DeepFormants
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

vowels 55 69 84 70 94 154 130 230 267 64 105 125 54 81 112
semivowels 68 80 103 89 126 222 136 295 334 83 122 154 67 114 168
nasal 75 112 106 96 229 239 219 409 381 67 120 112 66 175 151
fricatives 91 113 125 209 263 439 564 593 700 129 108 131 131 135 159
affricates 89 118 135 292 407 390 730 515 583 141 129 149 164 162 189
stops 91 110 116 168 210 286 258 270 351 130 113 119 131 135 168

Table 4: Same as for Table 3 except for the focus on temporal regions of CV transitions and VC transitions.

WaveSurfer Praat MSR [10] DeepFormants
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

CV transitions 156 192 273 169 225 261 106 101 119 110 142 165
VC transitions 59 88 157 344 355 495 48 92 120 53 80 111

ambiguous spectrograms where both the manual annotation and
the predicted value can be correct.

4.2. Tracking

We now present the results for our tracking model. We evalu-
ated the model on whole spoken utterances of VTR. We com-
pared our results to Praat, to the results obtained in [18] from
WaveSurfer and from the MSR tracking algorithm. Table 3
shows the accuracy in mean absolute difference in Hz for each
broad phonetic class. The inter-labeler variation is also pre-
sented in this table for reference (from [18]).

Our method outperforms Praat and WaveSurfer in every
category, and compared to MSR our model shows higher pre-
cision with vowels and semivowels while MSR reports higher
precision with nasals, fricatives, affricates and stops. It’s worth
mentioning though that the phone class where formants are
most indicative of speech phenomena is vowels. The higher
precision reported by MSR in consonant phone classes is most
likely due to the fact that the database abtained its initial trajec-
tory labels from MSR and was then manualy corrected [18] so
in phonemes without clear formants (i.e. consonants) there is a
natural bias towards the trajectories labled by MSR.

We also examined the errors of the algorithms when lim-
iting the error-counting regions to only the consonant-to-vowel
(CV) and vowel-to-consonant (VC) transitions. The transition
regions are fixed to be 6 frames, with 3 frames to the left and
3 frames to the right of CV or VC boundaries defined in the
TIMIT database. The detailed results are listed in Table 4.

Results from other works on the VTR dataset include [12]
and compared to his results seen in Table 5 our precision is on
par for the first formant but greatly improved for the second and
third formants. Error is measured in root mean squared error
(RMSE).

Table 5: Formant tracking performance of KARMA, and deep
learning in terms of root-mean-square error (RMSE) per for-
mant. RMSE is only computed over speech-labeled frames.

Method F1 F2 F3 Overall
KARMA [12] 114 226 320 220
DeepFormants 118 169 204 163

5. Conclusions
Accurate models for formant tracking and estimation were pre-
sented with the former surpassing existing automated systems
accuracy and the latter within the margins of human inconsis-
tencies. Deep learning has proved to be a viable option for au-
tomated formant estimation tasks and if more annotated data is
introduced, we project higher accuracy models can be trained
as analysis of the phonemes with the least accuracy on average
seems to show that they were the ones that were represented the
least in the database.

In this paper we have demonstrated automated formant
tracking and estimation tools that are ready to be added to the
methods that sociolinguists use to analyze acoustic data. The
tools will be publicly available at https://github.com/
MLSpeech/DeepFormants.

In future work we will consider the formant bandwidths es-
timation. Moreover, we would like to evaluate our method on
noisy environments, as well as reproducing phonological exper-
iments such as [28].
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