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Abstract
This paper presents a novel approach to address data sparseness
in standard confusion matrices and demonstrates how enhanced
matrices, which capture additional similarities, can impact the
performance of spoken term detection. Using the same training
data as for the standard phone confusion matrix, an enhanced
confusion matrix is created by iteratively restricting the recogni-
tion process to exclude one acoustic model per iteration. Since
this results in a greater amount of confusion data for each phone,
the enhanced confusion matrix encodes more similarities. The
enhanced phone confusion matrices perform demonstrably bet-
ter than standard confusion matrices on a spoken term detection
task which uses both HMMs and DNNs.
Index Terms: Phone-based speech recognition, confusion ma-
trices, a posteriori phone likelihoods, spoken term detection

1. Introduction
Despite the continuing improvements to speech recognition al-
gorithms from Hidden Markov Models (HMMs) [1] to Deep
Neural Networks (DNNs) [2], variation continues to represent
a challenge for speech technology applications. Variation can
arise as the result of the pronunciation of the speaker (both na-
tive and non-native) [3–5], noise [6, 7] or even as a result of
inaccuracies produced by the phone-based recogniser [8, 9], all
of which may cause a phone to deviate from its canonical spec-
ification. From the linguistic perspective, this variation can be
modelled with phonological rules which map between phonetic
variants (or allophones) and phonological forms (or phonemes).
In speech technology, this variation is addressed to some extent
through the use of confusion statistics which are calculated by
the speech recogniser and applied a posteriori to improve the
recognition performance. The confusions capture the extent to
which one phone is confused with another during recognition
and is thus regarded as representing some notion of similarity
among the confused phones. Applications of phone-based con-
fusions within speech technologies are often found in Informa-
tion Retrieval (IR) systems, such as spoken document retrieval
and spoken term detection [10–15].

A standard tool used in spoken term detection and speech
recognition for quantifying variation is the phone confusion ma-
trix [14] [16–19] which captures the confusion statistics be-
tween phones thus providing a way of defining commonalities
or groups [20–22]. However, a confusion matrix can suffer from
data sparseness due to the fact that although some phones may
be phonetically similar, only a small number of confusions may
be found with one or more other phones. This paper presents an
enhancement to the standard confusion matrix which addresses
data sparseness by incrementally constraining the recognition
space, a process which will henceforth be referred to as re-
stricted recognition. It will be shown that the enhanced con-

fusion matrix based on restricted recognition better represents
phone similarity compared to the standard confusion matrix.
The contribution of this paper lies in the improvement in quan-
tification of a posteriori phone confusions helping to address
variation in speech technology. An evaluation of the enhanced
phone confusion matrix benchmarked with respect to the stan-
dard phone confusion matrix and a matrix of binary confusions
is carried out in the context of a spoken term detection experi-
ment across two different corpora using HMMs and DNNs.

The remainder of the paper is structured as follows: in Sec-
tion 2 the method for calculating the standard phone confusion
matrix and the enhanced phone confusion matrix based on re-
stricted recognition is presented. Section 3 describes the spo-
ken term detection experiment used to evaluate the two types of
confusion matrix with the results of the experiment presented
in Section 4. Section 5 discusses the resultant enhanced phone
confusion matrix with respect to sparseness and conclusions are
drawn in Section 6.

2. Confusion Matrix Calculation
For standard phone-based confusion matrix calculation, the hy-
pothesised strings of phones per utterance from a phone recog-
niser are compared against a reference phone transcription so
that differences can be quantified. A confusion matrix, CM , is
an N by M matrix where N is the quantity of phone types ap-
plied to the recognition process i.e. the acoustic phone models,
and M is the quantity of phone types within the reference tran-
scriptions. In a standard phone confusion matrix, N and M are
equal as all phone types in the reference transcriptions are repre-
sented by acoustic phone models. By comparing the recognised
string of phones for an utterance to that of its reference tran-
scription, the matrix is then populated with the frequency of oc-
currence of confused phones. In this experiment, phone-based
confusion matrices are creating using HTK’s HResults [23].

2.1. Enhancement with Iterative Restricted Recognition

A strong biasing factor of phone confusion generation is the ac-
curacy of the phone recogniser, whereby increasing accuracy
results in a decreasing number of confusions. However, with
restricted recognition, it is possible to generate a larger num-
ber of confusions compared to standard recognition. Within re-
stricted recognition confusions can be regarded as primarily in-
tentional rather than as a result of recognition error. Restricted
recognition removes the acoustic model for one phone from the
recognition process in order to ascertain what other phones are
recognised in its place. Hence that particular phone will never
be recognised, instead another phone is recognised that is con-
sidered to be similar. Restricted recognition is undertaken iter-
atively, removing one acoustic phone model at a time building
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the confusion matrix incrementally i.e. for each acoustic model,

1. exclude the model from the recognition process and
recognise using the remaining models

2. insert the phone confusions for the transcription phone
represented by the excluded model into the enhanced
confusion matrix

This means that for the acoustic phone model which has been
excluded from the recognition process, an alternative model will
always be used to recognise that phone within an utterance. In
practice, for each iteration of restricted recognition a standard
confusion matrix is calculated, however only row m is used to
populate the enhanced confusion matrix where m is the index
of the acoustic model excluded during that recognition cycle.In
Figure 1, restricted recognition is illustrated within a Bayesian
framework where a particular acoustic phone model, Modelm
where m = 1, is excluded during the recognition of an observa-
tion. This results in the recognition process always selecting an
alternative acoustic phone model in place of the excluded model
thus generating substitutions for that phone with respect to the
reference transcription whilst maintaining the integrity (recog-
nition accuracy) of the other acoustic phone models.

Figure 1: Restricted recognition excluding model Modelm
where m = 1

Since restricted recognition is applied to each acoustic
phone model, there are M iterations of the process. When the
iterative restricted recognition is complete, the enhanced con-
fusion matrix is fully populated. The diagonal of the enhanced
confusion matrix contains only zeros since the excluded acous-
tic phone model meant that the reference transcription phone
could never be recognised correctly as itself. However, re-
stricted recognition ensures that the maximum amount of con-
fusions are generated for each phone.

Clearly restricted recognition requires a corpus in order to
train the acoustic models and a speech recognition method to
generate the matrix.

2.2. Training Corpus and ASR

The training corpus used to create the confusion matrices is
the widely-used TIMIT training data set [24] as each audio
file comes with a gold standard, hand-verified phone transcrip-
tion. This corpus comes pre-divided into a phonetically bal-
anced training and test set comprised of 630 speakers of 8 major
American-English dialects. The training data set contains 3696

audio files. Each audio file contains a sentence length utterance.
Prior to phone recognition and phone confusion matrix genera-
tion, acoustic phone models are trained using the audio belong-
ing to the training data. The tool used for training the acous-
tic models is the Hidden Markov Model Toolkit version 3.41
(HTK) [23]. For completeness and repeatability, the training
strategy used within HTK is based on Cantab Research’s train-
ing script [25], and the tutorial within the HTK manual, [23].
This configuration was found to yield a phone recognition accu-
racy of approximately 95.29% based on training and evaluating
within the same training dataset. This accuracy indicates that
the acoustic models are sufficiently trained with respect to the
training data. Furthermore, the accuracy reported here indicates
the quantity of available confusion data within a standard confu-
sion matrix is approximately 5%. Of course phone recognition
accuracy on test sets is considerably lower; however, confusion
likelihoods determined from the training set are used here to
address phone variation within the spoken term detection test
sets. The following section describes how confusion matrices
are evaluated using spoken term detection.

3. Confusion Matrix Evaluation
3.1. Spoken Term Detection Using Confusion Matrices

In this section a spoken term detection experiment is presented
which evaluates the performance of 3 types of phone-based con-
fusion matrices. The detection of spoken terms as keywords is
implemented using dynamic programming by aligning keyword
and utterance phones so that an alignment difference score can
be calculated as illustrated in Figure 2.

Figure 2: Overview of Dynamic Programming Environment.

A keyword-utterance difference matrix, D, is defined as a
X by Y matrix, where X is the total number of phones in an
utterance containing several words and Y is the total number
of phones in a keyword. For each entry within D, a difference
score is calculated between the keyword phone, k[y], and an ut-
terance phone, u[x]. The probability of a keyword phone being
confused with an utterance phone is calculated using the con-
tents of an N by M confusion matrix, CM , as shown below:

P (phone[m]|phone[n]) =
CM [n,m]∑N
i=1 CM [i,m]

(1)

For phone[m] = k[y] and phone[n] = u[x] the difference
matrix value is calculated as:

D[x, y] = 1− P (k[y]|u[x]) (2)

Note that where k[y] and u[x] are the same then P (k[y]|u[x]) =
1 i.e. 100% similar. Once a difference matrix is fully popu-
lated, the optimal alignment path through the difference matrix
is found using a recursive search governed by linear constraints:
D[x+ 1, y + 1], D[x+ 1, y], D[x, y + 1].
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Figure 3: Optimal path within difference matrix

This search ensures that the optimal alignment path is al-
ways found. The optimal alignment path within a difference
matrix is the subset of the path which yields the best alignment
between the keyword and the utterance phones as illustrated in
Figure 3. The difference matrix values at the coordinates within
the optimal alignment path are summed to determine the de-
tection difference score. For each utterance within the search
space, a detection score is calculated for a keyword. In the fol-
lowing section, different search spaces and phone recognition
algorithms to decode these search spaces are presented.

3.2. Search Space

The spoken term detection experiment is repeated using differ-
ent phone recognition algorithms and different acoustic search
spaces. The latter includes the test set of the TIMIT and
NTIMIT [26] corpora. Each test set contains 1344 utterances.
NTIMIT was collected by passing the original TIMIT dataset
through multiple channels across a telephone network over a
telephone handset and thus has degraded acoustic quality with
respect to TIMIT which increases the difficulty of the recogni-
tion process resulting in more recognition errors. These search
spaces are decoded into phones using two different phone
recognition algorithms: HTK’s HMM [23], and KALDI’s DNN
[27]. For repeatability, KALDI’s TIMIT recipe is used. The
phone sequences for the keywords are determined from a canon-
ical lookup table, namely the TIMIT word-to-phone dictionary.
The keywords in this search space have the following prop-
erties 1) they appear at least five times within TIMIT’s (and
NTIMIT’s) test set and 2) canonically they contain at least five
phones. In total this yields 202 keywords within each of the test
sets. The average word count of each of the keywords is 7.43
out of a possible 11, 025 word instances across 1344 utterances.

4. Results

In this section, false alarm and miss probability Equal Error
Rates (EERs) from a detection error trade-off (DET) curve [28]
are reported for the spoken term detection experiment using bi-
nary, standard and enhanced phone confusion matrices. The
binary matrix, which does not take degrees of similarity into
account, is included in order to illustrate the impact of using a
posteriori phone confusion likelihoods. A summary of the key-
word detection results and their associated search space accura-
cies with respect to different confusion matrices can be found
in Table 1.

Table 1: Spoken term detection EERs for different confusion
matrices across different datasets and speech recognition algo-
rithms. Values in parenthesis are discussed in Section 5.

Acoustic Search Space Information Keyword Detection EER (%)
Search Rec. Rec. Binary Standard EnhancedSpace Alg. Acc. (%)
TIMIT Manual 100 8.59 3.39 (3.52) 2.06
TIMIT DNN 75.8 13.54 8.98 (9.05) 6.71
TIMIT HMM 64.63 16.53 14.46 (13.97) 10.93

NTIMIT DNN 63.2 22.06 17.2 (16.6) 13.6
NTIMIT HMM 49.13 26.9 21.76 (21.72) 18.53

This table also includes EERs for a spoken term detection
experiment using an ideal search space based on TIMIT’s test
reference phone transcriptions to simulate a recogniser with per-
fect accuracy. The results in Table 1 show that the EER of the
spoken term detection experiment is proportional to several fac-
tors: the quality of the speech within a dataset, the accuracy of
the recognition engine and the accuracy of the confusion ma-
trix. The impact on the EER from the speech quality is evident
between the TIMIT and NTIMIT datasets whereby, for each
corresponding recognition algorithm and confusion matrix, the
acoustically degraded NTIMIT dataset always performs worse.
The impact of recognition accuracy is evident across the entire
table whereby the better the recognition accuracy of the search
space, the better the keyword detection result. Finally, for each
confusion matrix across different quality datasets, recognition
algorithms and search space recognition accuracy, the keyword
detection EER from the enhanced confusion matrix is consis-
tently better. False alarms and miss probabilities beyond that of
the EERs given in Table 1 are presented in Figure 4, Figure 5,
Figure 6 and Figure 7 via NIST DET curve plotting tools [29].
From these DET curves, the spoken term detection experiment
using the enhanced confusion matrix performs the best over a
range of values.

Figure 4: DET Curves For TIMIT Test Search Space Using
DNNs. EER (%) Per Confusion Matrix: Binary = 13.54%, stan-
dard = 8.98%, enhanced = 6.71%

5. Discussion
In order to demonstrate that the enhanced phone confusion ma-
trix not only performs better on the spoken term detection task,
but also offers a solution to the data sparseness problem associ-
ated with the standard confusion matrix, it is necessary to look
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Figure 5: DET Curves For TIMIT Test Search Space Using
HMMs. EER (%) Per Confusion Matrix: Binary = 16.53%,
standard = 14.46%, enhanced = 10.93%

Figure 6: DET Curves For NTIMIT Test Search Space Using
DNNs. EER (%) Per Confusion Matrix: Binary = 22.06%, stan-
dard = 17.2%, enhanced = 13.6%

more closely at the matrices themselves. Since both matrices
are too large to present in full here, for the purposes of illustra-
tion, only the top confusion for each phone is presented in Ta-
ble 2. From this table it is clear that the number of confusions
captured in the enhanced confusion matrix (using 100% of con-
fusions) is far greater than the standard confusion matrix (using
only ≈5% of confusions). Whilst there are some differences
between the top confusion labels, it is clear that the confusion
quantities are very different and have an impact on the results of
the spoken term detection task. For low resource spoken term
detection applications, low quantities of confusions as found in
the standard confusion matrix are likely to impact performance;
this can be overcome through the use of restricted recognition
to calculate an enhanced confusion matrix.

To increase the percentage of confusions captured within a
standard confusion matrix, a development test set was also in-
vestigated for standard confusion matrix calculation. Spoken
term detection tasks were then repeated with a standard confu-
sion matrix using the TIMIT test set as a best case development
set for confusion matrix calculation. In Table 1 spoken term de-

Figure 7: DET Curves For The NTIMIT Test Search Space Us-
ing HMMs. EER (%) Per Confusion Matrix: Binary = 26.9%,
standard = 21.76%, enhanced = 18.53%

Table 2: Reference phone quantities within the TIMIT training
set and their top confusions and quantities within the standard
(Std) and enhanced confusion (Enh) matrices.

Top Confusion Qty. Top Confusion Qty.
Ref. Phone Std Enh Ref. Phone Std Enh
aa (2256) ao,ah (5) ao (1043) ix (7370) ih(71) ih (3895)
ae (2292) eh (10) eh (236) iy (4626) ix (9) ix (1103)
ah (2266) ax (20) ax (500) jh (1013) ch (10) ch (636)
ao (1865) aa (6) aa (878) k (4489) g (17) g (2128)
aw (728) aa (4) aa (209) l (4425) el (13) el (3549)
ax (3535) ix (55) ix (1162) m (3442) n,em (4) em (2089)
axh (357) ix (15) ix (85) n (6219) nx (20) en (2417)
axr (2445) r (13) er (1391) ng (1194) n (5) n (602)
ay (1934) ah (3) aa (280) nx (677) n (13) n (487)
b (2429) p (18) p (753) ow (1653) eh,ax (2) l (288)
ch (820) jh (13) jh (501) oy (304) eh (1) ey (85)
d (4451) t (61) t (2218) p (2929) b (13) b (885)
dh (2376) th (14) th (911) q (2685) t (14) hv (230)
dx (1864) d (18) d (661) r (4681) axr (28) axr (2850)
eh (3277) ix,ih (12) ae (1520) s (6176) z (41) z (5159)
el (951) l (18) l (809) sh (1317) s (7) zh (528)

em (124) m (3) m (72) t (6367) d (47) d (2720)
en (630) n (18) n (486) th (745) dh (6) dh (206)
eng (26) () ng (17) uh (500) ix (8) ax (104)
epi (908) t,f (4) t (85) uw (529) ux,ax (4) ux (133)
er (1693) axr (7) axr (1074) ux (1423) ix (13) ix (430)
ey (2271) iy (4) iy (903) v (1994) f (22) f (589)
f (2215) p (7) v (709) w (2216) r (3) l (949)
g (1458) k (13) k (779) y (995) iy (3) iy (323)
hh (937) hv (8) hv (449) z (3682) s (52) s (3010)
hv (723) hh (7) hh (491) zh (149) sh,dx (1) sh (77)
ih (4248) ix (84) ix (2593)

tection EERs based on a standard confusion matrix calculated
from a development set are presented within parenthesis. How-
ever, the enhanced confusion matrix still results in better EERs.

6. Conclusions
This paper has shown that a novel approach using restricted
recognition to enhance phone confusion matrices addresses the
data sparseness problem of standard confusion matrices and
provides a data-driven resource which captures degrees of sim-
ilarity between phones. As a resource, this enhanced confusion
matrix was shown to perform better on a spoken term detection
task using different corpora and speech recognition methods.
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