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Abstract
Deep learning and i-vectors have been successfully used in
speech and speaker recognition recently. In this work we pro-
pose a framework based on deep belief network (DBN) and i-
vector space modeling for acoustic emotion recognition. We
use two types of labels for frame level DBN training. The first
one is the vector of posterior probabilities calculated from the
GMM universal background model (UBM). The second one is
the predicted label based on the GMMs. The DBN is trained to
minimize errors for both types. After DBN training, we use the
vector of posterior probabilities estimated by DBN to replace
the UBM for i-vector extraction. Finally the extracted i-vectors
are used in backend classifiers for emotion recognition. Our ex-
periments on the USC IEMOCAP data show the effectiveness
of our proposed DBN-ivector framework. In particular, with de-
cision level combination, our proposed system yields significant
improvement on both unweighted and weighted accuracy.
Index Terms: Emotion recognition, DBN, i-vector

1. Introduction
There has been a lot of research efforts on acoustic emotion
recognition in recent years. Because human’s emotion is quite
complex in terms of both generation and perception, how to
predict accurate affective information from natural and spon-
taneous speech is still a challenging task. Most of past re-
search on this problem has focused on extracting discrimina-
tive features and developing robust models. One of the most
successful systems is based on supra-segmental acoustic fea-
tures and has shown great performance in many challenges re-
cently [1, 2]. In this method, various statistical functions are
applied to different types of low level acoustic features. The de-
rived high dimensional features can be used in traditional back-
end classifiers. Another type of systems uses frame-level dy-
namic features (e.g., MFCC features). Different methods have
been proposed to model these features, for example, Gaussian
Mixture Model (GMM), HMM, and i-vector space modeling.
Among them, the i-vector approach has shown competitive sys-
tem performance recently on affective computing related tasks
[3, 4, 5, 6]. The i-vector extraction process aims to obtain the
most important variations from high-dimensional supervectors
based on GMMs. Then these i-vectors can be used as features
in back-end classifiers (see Sec. 2 for more descriptions).

In the past few years, deep learning has become the stan-
dard approach for speech recognition. The role of all types of
deep networks, such as deep neural networks (DNN) or convo-
lution neural networks (CNN), is often to replace the traditional
GMMs. These deep networks have the ability to learn high-
level hidden features [7]. They are discriminatively trained,
whereas the standard GMM is a generative model. In [8] and
[9], the authors investigated training DNN and CNN to replace
GMMs in speaker identification and language identification.

The DNN and CNN are trained to minimize the labeling error
for the tied-triphones. The outputs from the deep networks are
used to calculate the sufficient statistics for extracting i-vectors.
Improved speaker and language identification performance is
observed using such i-vectors.

Deep learning techniques have also been applied to the
acoustic emotion recognition task [10] [11]. In this paper, we
propose to use DBN in the paradigm of i-vector space modeling
approach for acoustic emotion recognition in order to combine
the advantages of the two approaches. The key idea is to use a
discriminately trained DBN to estimate the posterior probabil-
ities of the mixture components for each frame and use these
for i-vector extraction. Our proposed method has the follow-
ing steps. The first step generates two kinds of labels for each
frame. One is the posterior probabilities of the mixture compo-
nents of the universal background model (UBM) that is trained
using all the data. The other one is the predicted emotion label
based on the likelihood of the emotional GMMs that are trained
with the corresponding training utterances. In the second step, a
DBN is built and trained to simultaneously minimize two kinds
of loss functions with respect to the two different labels above:
one loss is the cross entropy between the DBN’s outputs and the
frame’s posterior probabilities based on the UBM; and the other
is the negative log-likelihood of the predicted label. For DBN
training, we evaluate two input variations of the self labels from
the UBM and GMMs: i) for each frame, we only use the top N
posterior probabilities and zero out the others in the vector of
posterior probabilities; ii) the vector of posterior probabilities
and the log likelihood from the emotional GMM are smoothed
by taking the average of the labels for the current frame with
those from the previous and the following frames. In the last
step, after training DBN, its output is used to replace the poste-
rior probability of the UBM to calculate the zero order and first
order statistics, and then i-vector is extracted and fed into the
back-end classifier for emotion recognition. Our experimental
results on the USC IEMOCAP data show our proposed method
outperforms the standard i-vector or DBN methods for emotion
recognition.

2. i-vector space modeling and Deep Belief
Network framework

Both i-vector space modeling and DBN are used as a transfor-
mation method to change the features into another representa-
tion, which is further used in a back-end classifier for emotion
recognition. In the following we briefly describe the i-vector
extraction and DBN training methods.

2.1. i-vector space modeling

I-vector space modeling approach maps the high dimensional
GMM supervector space (generated from concatenating all the
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mean values of GMM) to low dimensional total variability
space which contains most variation between segments. The
target GMM supervector can be viewed as shifted from the
UBM. Formally, a target GMM supervector M can be written
as:

M = m+ Tw (1)

where m represents the UBM supervector, T is a low dimen-
sional rectangular total variability matrix, and w is termed as
i-vector. In order to estimate total variability matrix T and i-
vector wu for a given utterance u, Baum-Welch statistics, zero
order Nu and first order Fu, are needed and can be calculated
as the following:

Nu
c =

L∑
t=1

P (c|xtu) (2)

Fu
c =

L∑
t=1

P (c|xtu)xtu (3)

where c represents the index of Gaussian mixture component in
GMM, xtu is the t-th frame in utterance u, and P (c|xtu) is the
posterior probability of the cth mixture. Given Fu

c and GMM,
the centralized first order statistics can be obtained as follows:

Fu
c =

L∑
t=1

P (c|xtu)(xtu −mc) (4)

where mc is the c-th mean of the given GMM. With suffi-
cient statistics, total variability matrix T is estimated through
EM algorithm introduced in [12] and latent vector wu can be
extracted. [13] describes more details about how to extract i-
vectors.

2.2. Deep Belief Network

DBN is constructed by stacking more than one Restricted Boltz-
mann Machines (RBMs), which is one special case of undi-
rected graphical models [7]. This framework learns to extract
meaningful hidden hierarchical representation from the training
data. The training process of DBN is divided into two steps,
unsupervised pre-training and supervised fine-tuning.

The pre-training stage typically is done in a greedy layer-
wised manner. In this work, Gaussian-RBM is used as the layer
component in order to model the real-valued acoustic inputs.
Given input data v as the visible nodes and hidden variable h as
the hidden nodes, the joint-probability of Gaussian-RBM is:

p(v) =

∑
h e
−E(v,h)

Z
(5)

where Z is the partition function, and the energy function
E(v, h) is calculated as follows:

E(v, h) =
∑
i∈vis

1

2σ2
i

(vi − bi)2 −
∑
j∈hid

cjhj −
∑
i,j

vi
σi
hjwij

(6)
where wij is the connection matrix between the hidden and vis-
ible nodes, σi is the standard deviation of the visible unit i, and
b and c are the bias vectors for the visible and hidden nodes
respectively. The learning process is to minimize the empiri-
cal negative log-likelihood of the training data. The approxi-
mate algorithm called Contrastive Divergence (CD) is applied
to update parameters efficiently. In this DBN framework, we

use the Noisy Rectified Linear Unit (NReLU) [14] as the non-
linear activation function instead of using the sigmoid function.
We also add an upper-bound to avoid having hidden nodes with
large values. The upper-bound value in this paper is equal to 1.
More information about NReLU used in DBN can be found in
[14, 15, 16].

After pre-training, the parameters of DBN are used as the
initial values and further tuned in the subsequent supervised
fine-tuning stage. The detail of the fine-tuning stage used in
our method is described in the following section.

3. DBN-ivector framework
In this section, we will describe our proposed DBN-ivector
framework for emotion recognition. Deep networks have been
widely adopted in ASR systems for acoustic modeling. For
deep network training in ASR, it is straightforward to use labels
such as phones or tri-phones. However, for acoustic emotion
recognition, it is not easy to obtain accurate frame level labels.
This is because on one hand it is hard for human annotators to
assign emotion labels to frames, and on the other hand the au-
tomatic classifiers are not accurate, unlike forced alignment in
ASR training, resulting in unreliable predicted labels. In this
work, we use two different frame labels for discriminate DBN
training. The details of our proposed method are as follows.

There are three major components in our framework, as
shown in Figure 1. In the first component (the left box in Figure
1), we generate two types of labels for each frame.

• Posterior probabilities of mixture components of the
UBM: We train the UBM of MFCC features using
all the training data. For an utterance u, xut rep-
resents the feature set of t-th frame. Given xut ,
a vector of posterior probabilities, P (c|xut ,Ω) =
[p(c1|xut ,Ω), p(c2|xut ,Ω), ..., p(cM |xut ,Ω)] can be cal-
culated, where Ω is the UBM and M is its number of
mixtures.

• Predicted emotional label by GMMs: For L emotion
classes, we train L emotional GMMs with the corre-
sponding utterances for each emotion. Then the log like-
lihood, LLK(xut |Ωj), can be calculated for each frame
using each GMM Ωj , and the prediction, pred(xut ), can
be obtained by choosing the largest LLK(xut |Ωj).

The second component is DBN training, shown in the mid-
dle in Figure 1. In our work, the pre-training step is the same as
the traditional DBN introduced in the previous section. How-
ever, the fine-tuning stage is different since here we consider
two optimization targets, corresponding to the two kinds of la-
bels described above.

• For the predicted emotion label of xut , we minimize the
negative of the log likelihood of the given prediction,
Pred(xut ). The softmax layer is put on top of the last
hidden layer hl for classification. The loss function is as
follow:

p(pred(xut )|hl, x
u
t ) =

eh
T
l Wk+Bk∑

j e
hT
l
Wj+Bj

(7)

whereW andB are the parameters of the soft-max layer.

• For the posterior probabilities of the mixture compo-
nents, we use cross entropy [17] . One additional hidden
layer hd is put on top of the last hidden layer. The num-
ber of hidden nodes is equal to the size of P (c|xut ), i.e.,
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Figure 1: DBN-ivector framework

the number of mixture components of UBM. Since the
posterior probabilities are in the range of [0, 1], we use a
sigmoid function, hd = sigmoid(Wd ∗ hl + bd), where
Wd and bd are the weight and bias matrix connected with
hl. The optimization process is to reduce the cross en-
tropy error between hd and P (c|xut ). The cross entropy
error is calculated as follows:

Lossce(hd,P (c|xut )) = −[hdlog(P (c|xut ))

+ (1− hd)log(1− P (c|xut ))]
(8)

Considering both labels, the loss function used in the DBN is
thus:

Loss = Lossce(hd,P (c|xut )) +α ∗ (−p(pred(xut )|hl)) (9)

where α is the hyper parameter for balancing the two types of
losses (we use 0.5 in this work). With iterative training, the
DBN is trained to simultaneously lower the combined cross en-
tropy and classification error.

Because there is noise in the two kinds of self-generated
labels, we propose two approaches to vary the labels for DBN
training. These are also motivated by the observation that hu-
man emotions are highly related to long temporal information
and frame-level labeling is not accurate. The followings are the
two methods we evaluate.

• Instead of using posterior probabilities for all the mixture
components, we use a selection strategy by keeping the
top N posterior probabilities in the vector P (c|xut ), and
setting the others to zero. This is expected to keep only
the most confident mixture components and remove the
noise from other unreliable ones.

• We use a smoothing strategy for the posterior probabili-
ties and the likelihood scores by taking the average of the
values from a window including the current frame and its
previous and following K frames:

P (c|xut ) =
1

2k + 1

t+k∑
i=t−k

P (c|xui ) (10)

LLK(xut |Ωj) =
1

2k + 1

t+k∑
i=t−k

LLK(xut |Ωj) (11)

After smoothing, P (c|xut ) is used as the vector of
posterior probabilities for xut . The prediction of xut ,
Pred(xut ), can be obtained by taking the argmax func-
tion on LLK(xut |Ωj). Such smoothing allows us to use
longer range information than a single frame, which is
consistent with human’s perception of emotion.

After training DBN, hd is calculated by feedforwarding
through the network for every frame and taken as the input of
the third step (right box in Figure 1). Each output in hd, corre-
sponding to one mixture component, replaces p(c|x) in Equa-
tion 2 and 3. With sufficient statistics, i-vector w can be ob-
tained from the standard i-vector extraction process, and then
fed into SVM for training the emotion recognition model.

Note that Fig 1 shows the training process of our DBN-
ivector framework. For testing, we feed the MFCC features of
each frame to the DBN model, and use the posterior probability
output from the DBN and the GMM supervectors to calculate
the i-vector and then obtain the SVM’s emotion prediction.

4. Experiment
4.1. Data

In this work, we use Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) [18] to evaluate our proposed method. This
corpus has approximately 12 hours of audiovisual data, includ-
ing video, speech, motion capture of face, and text transcrip-
tions [18]. It has 10 professional actors (5 male and 5 female)
acting in two different scenarios: scripted play and spontaneous
dialog, in their dyadic interactions. Each interaction is around
5 minutes in length, and is segmented into sentence levels. We
use four emotion categories in this study: angry, happy, sad, and
neutral, similar to most prior studies using this corpus. Note
that we merged ‘happy’ and ‘excited’ in the original annotation
into the ‘happy’ class. Only the utterances with the majority
agreement are used in the experiments. In total we use 5,531
utterances. The class distribution is: 20.0% angry, 19.6% sad,
29.6% happy, and 30.8% neutral.

4.2. Experiment setup

The experiment protocol for IEMOCAP data is leave-one-
speaker-out which means there is no speaker overlap between
training and testing set. System performance is evaluated by
two metrics, weighted accuracy (WA) and unweighted accuracy
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Table 1: Emotion recognition result (%) for IEMOCAP
Systems WA UA

Standard i-vector 56.4 57.5
DBN-ivector 56.7 58.1

DBN-ivector N = 2 57.2 58.6
top N N = 4 56.6 57.9

N = 8 56.8 58.1
DBN-ivector K = 2 57.1 58.4

smooth K K = 4 57.0 58.3
window K = 7 56.6 58.2

K = 10 56.4 57.8

(UA). Both metrics are standard measurements used in several
previous emotion challenges.

The acoustic features we use are 39 dimensional MFCC in-
cluding first and second derivatives. The number of mixtures
of the UBM is 16 in this work. For DBN, the input is also 39
dimensional MFCC. Three hidden layers are used in DBN and
each of them has 100 hidden nodes. In the pre-training stage,
the learning rate is 0.0001 and the number of training iterations
is 5. Note that we use only the training data for pre-training.
In the fine-tuning stage, we use the ADADELTA algorithm for
optimizing the loss function because it does not need to preset
the global learning rate and it has a much faster converging rate
[19]. The fine-tuning iteration number is set to 5. We extract
100 dimension i-vector through the standard i-vector extraction
framework. Once the i-vector is obtained, we use a linear ker-
nel SVM with sequential minimal optimization (SMO) as the
back-end classifier for emotion recognition.

4.3. Result

The experimental results are show in Table 1. The baseline
system is the standard i-vector system that uses the sufficient
statistics directly calculated from the UBM. The WA and UA
of the baseline system is 56.4% and 57.5% respectively. Our
proposed DBN-ivector system without the top-N selection or
smoothing for DBN training achieves 56.7% for WA and 58.1%
for UA. The improvement suggests that the DBN can gener-
ate better statistics than the original UBM for standard i-vector
space modeling. However, the gain is limited. One potential
reason is because the GMM based emotion classifier is not accu-
rate and thus the frame level emotional labels for DBN training
are rather noisy. We expect better frame-level predictions can
further boost system performance of our proposed DBN-ivector
framework.

The following rows in the table show the effect of our two
processing strategies to generate reference input for DBN train-
ing. In the top-N selection approach, we vary N from [2, 4, 8]
out of the 16 mixture components. The best result is achieved
when N is 2, i.e., when only the top two Gaussian components
are preserved. The WA and UA are improved to 57.2% and
58.6% respectively. When larger N is used, for example, 4
and 8, there is a degradation in both WA and UA, compared
to when N is 2. The results are similar to the basic DBN-
ivector. When using a smoothing window, we empirically var-
ied K from [2, 4, 7, 10], which means the number of frames
used for smoothing is 5, 9, 15 and 21 respectively. We can see
that compared to the results of the basic DBN-ivector, smooth-
ing yields some gain when K is not too large. The performance
decreases when the window is too big, suggesting that discrim-

Table 2: Accuracy (%)of four emotion categories
Systems Angry Happy Neutral Sad

DBN-ivector 65.4 50.7 51.6 64.8
DBN-ivector-top2 65.9 51.3 52.6 64.6

K=2 65.7 52.5 52.4 62.7
DBN-ivector K=4 66.1 52.1 52.4 62.4
with top K K=7 65.1 50.3 51.0 66.4

K=10 63.8 49.4 52.7 65.6

Table 3: Results (%) of decision level combination
System1 System2 WA UA

smoothing K=2 57.6 58.9
DBN-ivector-top2 smoothing K=4 58.0 59.3

smoothing K=7 58.1 59.6
smoothing K=10 58.1 59.5

inative emotional information may be smoothed out.
To better understand system performance, the accuracy of

each emotion category is shown in Table 2. We can see that
when using the top 2 mixtures, performance on Angry and Sad
is similar to the basic DBN-ivector, but there is some improve-
ment for Happy and Neutral. When different K is used for
smoothing, we observe some different patterns. When K is 2
and 4, both Happy and Neutral have improved performance, but
accuracy of Sad is worse. However, when a longer window is
used, performance of Sad is significantly improved (it is 66.4%
when K is 7). When K increases to 10, there is still some im-
provement for the Sad category, but the accuracy for Angry and
Happy drops. These suggest that we may need different time
segments to appropriately represent and model different emo-
tions.

Based on the observation above that systems with top se-
lection and window smoothing for DBN training have gains on
different emotion categories, it is worthwhile to treat them as
different systems and perform system combination to leverage
their strengths. Table 3 shows the decision level combination
results using the two approaches. We use the same weight in
combination. We combine DBN-ivector-top2 with the smooth-
ing system that uses different window lengths. These results
demonstrate that with decision level combination there is a con-
sistent improvement in both WA and UA for all the K values.
The best results are obtained when K is equal to 7, 58.1%
for WA and 59.6% for UA. Compared to the standard i-vector
framework, the improvement is statistically significant (p value
< 0.05 with one tailed z-test). This shows that the two systems,
with smoothing frames and top N selection strategy for DBN
training, complement with each other.

5. Conclusion & Future Work
In this paper, we proposed to combine DBN and i-vector space
modeling for acoustic emotion recognition. A trained DBN
is used to calculate sufficient statistics for the i-vector frame-
work. Our experimental results show this proposed DBN-
ivector method outperforms the standard i-vector framework.
We also proposed two post-processing strategies to generate ro-
bust labels for DBN-training, and demonstrated that their com-
bination achieves singificantly better performance than the basic
DBN-ivector framework. In the future work, we plan to investi-
gate other post-processing approaches to generate more reliable
reference labels for DBN training.
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