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Abstract
We study the problem of mapping from acoustic to visual
speech with the goal of generating accurate, perceptually natu-
ral speech animation automatically from an audio speech signal.
We present a sliding window deep neural network that learns a
mapping from a window of acoustic features to a window of
visual features from a large audio-visual speech dataset. Over-
lapping visual predictions are averaged to generate continuous,
smoothly varying speech animation. We outperform a baseline
HMM inversion approach in both objective and subjective eval-
uations and perform a thorough analysis of our results.
Index Terms: Audio-to-visual conversion, automatic speech
animation, sliding window deep neural networks.

1. Introduction
Audio-to-visual speech conversion is the task of predicting
speech-related facial motion from the acoustic signal, or auto-
matically animating the mouth directly from speech. Audio-to-
visual speech conversion is useful for applications such as fast
content creation for animated productions and low-bandwidth
multimodal communication.

Conventional automatic speech animation is performed by
first decoding the phonemic content of the speech, and then us-
ing the phoneme stream to either interpolate predefined key-
shapes [1, 2], stitch together existing speech movements [3–5]
or predict visual features using a form of generative statisti-
cal model [6–8]. Although phonemes are speaker independent,
they are language dependent and do not encode acoustic cues
regarding prosody and emphasis which contribute to the facial
pose. This work therefore considers mapping directly from the
acoustic signal to animation trajectories which can be used to
drive graphics face models.

A variety of approaches have been used to estimate facial
motion or visual features automatically from acoustic speech,
including multi-linear regression [9], audio-visual codebook
learning [10, 11] and a Kalman filter approach [12]. Many ap-
proaches rely on non-linear statistical models which are trained
on corpora of audio-visual speech and learn a mapping from
some acoustic parameterization to a corresponding visual pa-
rameterization. A popular approach is to use hidden Markov
models (HMMs) [13–18], which have been widely used by the
speech community for decades for both speech recognition and
synthesis. Chen [14] trained HMMs on joint audio-visual fea-
tures then separated the models for prediction. For new speech,
the visual HMM was sampled using the acoustic state sequence
as derived from the Viterbi algorithm. Choi et al. [15] and Ter-
rissi and Gómez [16] also trained joint audio-visual HMMs but
used HMM inversion (HMMI) to infer the visual parameters.
Xie et al. [17] introduced coupled HMMs (CHMMs) to account
for the asynchrony between audio and visual activity caused by

coarticulation [19]. Xie et al.’s model incorporated two hid-
den Markov chains, respectively describing the acoustic and vi-
sual information which were coupled through cross-chain and
cross-time conditional probabilities. Both HMMI and CHMM
approaches use a maximum likelihood optimization to predict
visual features given new audio and the trained model. More re-
cently, Zhang et al. [18] proposed a deep neural network (DNN)
to map acoustic features to state posterior probabilities of an
audio-visual HMM. Posteriors were converted to HMM emis-
sion likelihoods and animation was generated by sampling of
the inferred state sequence. Since the DNN made one prediction
per video frame, frequent state switching caused jittery anima-
tion. To address this, an optimization function searched for the
best state sequence using both the DNN prediction and a cost
penalizing state transitions.

An attractive feature of DNNs is that they impose no Gaus-
sian constraints upon the distribution of the data. Hong et
al. [20] clustered acoustic features into classes and trained a
separate neural network for each class. At the prediction stage,
audio features were first classified into one of the classes, and
the corresponding neural network was used to estimate the fa-
cial pose. A median filter smoothed the inherently discontin-
uous prediction. To better account for acoustic coarticulatory
effects, time-delayed neural networks (TDNNs) and recurrent
neural networks (RNNs) have been used. Massaro et al. [21]
and Takacs [22] trained TDNNs to map from audio features di-
rectly to controls of talking heads using 11 frame input win-
dows. Savran et al. [11] compared RNNs and TDNNs, con-
cluding that a TDNN with 9 frames of audio input centered at
the predicted frame performed best. They suggested that this is
due to the TDNN’s exposure to acoustic features from both the
future and the past, whereas the RNN can only see the past.

Our proposed approach considers carry-over and anticipa-
tory coarticulation in both the acoustic and visual modalities
by learning a sliding-window predictor with both windowed in-
put and output. This approach has previously worked well for
other spatio-temporal sequence prediction tasks [8] and allevi-
ates the need for arbitrary smoothing, which is necessary for
those methods that predict a single frame at a time [20, 21].
Specifically, our contributions can be summarized as follows:

• We extend conventional DNNs with windowed input and
output to account for both acoustic and visual coarticu-
lation effects.

• We investigate the level of acoustic detail and au-
dio/visual window size on audio-to-visual conversion ac-
curacy.

• We show that our method outperforms a baseline HMM
inversion approach both objectively and subjectively.

• We explore the effectiveness of acoustic speech for pre-
dicting visual speech. We discover that sibilant frica-
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tive and affricate consonants can be predicted most ac-
curately and velar consonants have highest error.

2. Sliding-Window Deep Neural Network
The goal of this work is to learn a model h(x) := y that can
predict a realistic facial pose for any audio speech given au-
dio features x that encode the acoustic speech signal and visual
features y that encode the configuration of the lower face. Our
approach is inspired by Kim et al.’s [8] sliding window deci-
sion tree regression used for automated camera control, sports
player tracking and phoneme-driven speech animation. Encour-
aged by the success of DNNs in the image domain, we instead
train a sliding window DNN (SW-DNN) rather than a decision
tree. This section describes the SW-DNN framework while im-
plementation details are discussed in Section 3. The following
work uses the Theano [23] deep learning library.

2.1. Model Training

We first decompose both audio input X = [x1,x2, . . .xn] and
corresponding visual output Y = [y1,y2, . . .yn] into overlap-
ping sequences of fixed-length pairs:

X′ =



x1−ka xn−ka

...
...

x1 · · · xn

...
...

x1+ka xn+ka

 ,Y′ =



y1−kv yn−kv

...
...

y1 · · · yn

...
...

y1+kv yn+kv

 (1)

where
ka =

⌊wa

2

⌋
and kv =

⌊wv

2

⌋
. (2)

wa and wv are the number of features included in the audio and
visual window respectively, and n is the total number of fea-
tures (video frames at 30Hz) in the training set. The size of
Y′ is (m ∗ wv)× n, where m is the dimensionality of Y. The
overlap is the duration of one video frame and audio features are
extracted such that the window is centered at the video frame.
Frames 1 to n index only the video frames that contain speech,
so for xj or yj where j < 1 or j > n, the neighbouring si-
lence is included in the encoding. Each column of X′ and Y′

contains a stacked window of audio and visual features and rep-
resents one training sample. Model training is performed using
backpropagation with Nesterov accelerated momentum gradi-
ent descent [24] and a mean squared error (MSE) loss function:

MSE(h(X′)) =
1

n

n∑
i=1

‖h(x′i)− y′i‖
2
2. (3)

2.2. Audio-to-Visual Conversion

The trained SW-DNN can be used to convert audio speech into
a continuous sequence of visual features describing lip motion
that is both synchronous with the audio and perceptually accu-
rate. For unseen speech, the first step is to parameterize the
audio signal and decompose the features into overlapping se-
quences of window length wa as per training (Equation 1 (left)).
Given the audio features, the SW-DNN predicts a vector which
encodes a stacked window of visual features at each time t, ŷ′t.
The predicted vector is reshaped, giving Ŷ∗t , an m×wv matrix
containing the predicted subsequence at time t. Smooth anima-
tion trajectories are generated by overlapping and averaging the

subsequences:

ŷt =
1

wv

kv∑
i=−kv

ŷ∗t−i,i+kv
, (4)

where ŷ∗t,j is the j th column from the prediction at time t.

3. Experimental Results
Publicly available audio-visual speech datasets are either of lim-
ited vocabulary or size [25–27] and provide insufficient data for
training a DNN. Instead we use the KB-2k dataset from [4]
which is set for future release. KB-2k is a large audio-visual
speech dataset containing a male actor speaking≈2500 phonet-
ically balanced TIMIT sentences in a neutral style. The video is
sampled at 30fps and the audio at 48kHz. The dataset has been
phonetically transcribed although in this work the phoneme la-
bels are needed only for analysis. 200 sentences were randomly
selected to form the test set and validation set (100 of each), and
the remaining sentences form the training set.

3.1. Visual Parameterization

A set of 34 2D vertices defines a mesh demarcating the con-
tours of the lips, jaw and the nostrils. An active appearance
model (AAM) [28, 29] is used to track and parameterize this fa-
cial region in each frame of the video, generating a compact 47
dimensional vector y which encodes both the position and ap-
pearance of the area within the mesh for every frame at 30fps.
Please refer to [4] for further details of the visual parameteriza-
tion. This feature set is fixed for all experiments in this paper.

3.2. Audio Parameterization

MFCCs have been the dominant features used for speech recog-
nition for some time. Our MFCC extraction follows broadly the
method proposed in the Aurora Distributed Speech Recognition
standard [30] and begins by computing the power spectrum of
20ms Hamming windowed frames of audio which are extracted
every 10ms. These are input into a 40 channel mel filterbank
and a log and discrete cosine transform is applied to give x.

3.3. SW-DNN Training

The model hyper-parameters were selected by performing a
randomized grid search [31] over combinations of network
size (1-7 hidden layers), layer size (100-4000 units), hidden
layer dropout (0-0.9%) and learning rate (0.00001-0.01) using a
260ms window of 40 dimensional MFCCs as input (wa = 24)
and a 100ms window of 47 AAM parameters as output (wv =
3). The model with lowest MSE (Equation 3) after 20 epochs on
the validation set was trained for a further 180 epochs. The fi-
nal model has 3 hidden layers of 2000 rectified linear units [32]
with 0.5% dropout and is optimized at a learning rate of 0.0001.
The fully connected output layer contains linear units. Batch
normalization is used to speed up convergence. The model takes
≈30 minutes to train on an Nvidia Tesla GPU,and takes just
0.1ms to make a prediction on a CPU, which is fast enough to
produce real-time animation.

3.4. Effect of Audio and Visual Sliding Windows

We investigate the effect of window length by measuring the
prediction accuracy of SW-DNNs trained on audio and visual
windows of different durations. The key is that the audio win-
dow should be large enough to span relevant contextual infor-
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Acoustic window size (ms)

V
is
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(m

s)

60 100 140 180 220 260 300 340 380
33 78.6 71.5 68.4 66.4 65.8 65.7 65.0 65.9 65.5
100 - 73.6 69.6 67.1 66.0 65.3 65.4 64.9 65.4
167 - - 73.6 70.1 67.8 66.3 65.9 66.7 66.2
234 - - - 75.2 71.0 69.0 68.2 68.3 67.4

Table 1: MSE for SW-DNNs trained on pairs of audio (input)
and visual (output) window sizes computed on the validation
set. MSE was not computed where the visual window was
longer than the audio window (dashes).

13 20 25 30 35 40
# MFCCs

62

63

64

65

M
SE

Figure 1: Prediction MSE from DNNs trained using MFCC vec-
tors truncated at various points as acoustic features.

mation that is necessary to predict the facial pose and the visual
window is large enough to capture local coarticulatory effects.
Table 1 shows MSE computed over the validation set for various
audio (columns) and visual (rows) durations. We observe lowest
MSE for an audio window of 340ms and visual of 100ms, which
is highlighted in the table. This corresponds to using 32 over-
lapped audio frames and 3 visual frames. The audio window
duration is comparable to [8] (367ms), and is longer than [21]
(220ms) and [33] (183ms).

3.5. Quefrency Optimization

MFCCs are typically truncated to give N -dimensional vectors
where N = 13 since higher coefficients explain high quefren-
cies which convey harmonic information [30] . To investigate
the optimal number of coefficients for audio-to-visual conver-
sion we train SW-DNNs using N = {13, 20, 25, 30, 35, 40}
and measure the MSE of the prediction (Equation 3) on the val-
idation set. The topology of the DNN is fixed (see Section 2)
and the audio and visual window sizes are 340 and 100ms re-
spectively. Figure 1 shows the MSE as a function of the num-
ber of MFCCs. The MSE decreases as more coefficients are
included up to 25 and then increases as more coefficients are
retained. This suggests that coefficients over 13 should be re-
tained in audio-to-visual conversion as these higher quefrencies
contribute to prediction accuracy.

3.6. Comparison with HMM Inversion

We benchmark our method against Choi et al.’s HMM inver-
sion (HMMI) approach since HMMI was shown to outperform
a number of HMM-based techniques in an experimental com-
parison [33]. Our implementation of HMMI followed closely
the method described in [15] in which MFCCs were extracted at
10ms non-overlapping frames and the corresponding visual fea-
tures were upsampled to 100fps using a cubic spline. These fea-
tures are used to train joint audio-visual phoneme-based HMMs
with 3 states and 3 mixtures. Inversion is performed using a re-
cursive Baum-Welch optimization.

Each of the 100 test sentences (8470 samples) were pre-
dicted using both HMMI and our proposed sliding window
DNN framework (SW-DNN). The SW-DNN trajectories were

MSE (SE) CC
SW-DNN 59.2 (0.6) 0.83
HMMI 88.9 (1.1) 0.74

Table 2: MSE with standard error (SE), and correlation coeffi-
cient (CC) over the test sentences measured against ground truth
for SW-DNN prediction and HMMI.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sentence #
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m

GT SW-DNN HMMI

Figure 2: The mean rating for 20 test sentences where 1=real
and 0=synthesized. Blue bars show results for ground truth
(GT), green for SW-DNN and yellow for HMMI.

constructed from the predicted overlapping subsequences (see
Equation 4) and error was computed in 47 dimensional visual
feature space for both approaches. Table 2 shows the MSE
and standard error (SE) over the 100 test sentences measured
against ground truth. We observe that SW-DNN generates lower
error (59.2) than HMMI (88.9), with a significance level of
p � 0.001 according to one-way ANOVA analysis. We also
report the correlation coefficient (CC) of both methods and ob-
serve higher correlation with SW-DNN than HMMI at 0.83 and
0.74 respectively.

For illustration, Figure 3 shows the first dimension of the
predicted visual features with phoneme labels for both SW-
DNN (blue) and HMMI (red) against the ground truth fea-
tures which were extracted from the tracked video for the sen-
tence “She was ready for her great adventures and the ar-
rival of her mobile partner”. It can be observed that not
only does our approach more closely follow the ground truth
trajectory, but that it is smoothly varying and requires no
smoothing, whereas the HMMI approach is discontinuous and
makes abrupt changes at phoneme boundaries due to frequent
state transitions. Rendered examples of test sentences can be
found at: https://www.uea.ac.uk/computing/speech-language-
and-audio-processing/automatic-speech-animation

3.7. Subjective Evaluation

Twenty test sentences were randomly selected and rendered
from the encoded visual features under three conditions; ground
truth (GT), SW-DNN and HMMI. The ground truth condition
was included to measure the error introduced by rendering arte-
facts from the visual parameterization to attain a performance
goal for our approach. Each sentence was presented in a ran-
domized order to participants who were asked whether they
deemed the lip motion real or synthesized under a forced choice
binary condition. The experiment was performed using a web
interface and participants were recruited by sharing the URL
on social media. The first five responses from each partici-
pant were omitted from analysis to allow subjects to familiarize
themselves with the task, leaving an average of 26 responses
per sentence. Figure 2 shows the mean rating for each sentence
under each condition. We observe that SW-DNN almost always
outperforms HMMI in terms of perceived realism. Overall, the
HMMI predictions were perceived as real 19% of the time, SW-
DNN 58% and GT 78%. This means that almost 60% of the
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Figure 3: Comparing predictions of our sliding window DNN (SW-DNN) and HMM inversion (HMMI) for the first visual feature
which encodes the openness of the mouth.
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Figure 4: MSE per phoneme in the testing set. The label /sp/ denotes a mid-sentence short pause.

time our approach predicts facial motion that is perceived as
real. This is appreciable, since humans are adept at recognizing
subtle audio-visual discrepancies, so even a single incorrect lip
motion will affect the overall perception of realism.

3.8. Analysis of Prediction

To investigate further the effectiveness of the acoustic signal
for predicting visual speech we calculate the MSE for each
phoneme in the testing set. These are ranked and plotted in
Figure 4. Interestingly, the four consonants with lowest MSE
are all sibilant fricatives (/zh, z, sh, s/). These are followed by
affricates /jh, ch/, which are characterized by a plosive followed
by a sibilant fricative. The remaining non-sibilant fricative con-
sonants (/f, v, hh, dh, th/) are spread across the graph. One
explanation for this is that since fricatives are produced by forc-
ing air through a narrow channel, a turbulent airflow focuses
energy at higher frequencies. Sibilants are particularly charac-
teristic as they are made by directing a stream of air towards
the teeth and are typically louder and contain energy at higher
frequencies than non-sibilants, giving rise to distinctive acous-
tic features. Furthermore, the lip configurations of /zh, ch, sh,
jh/ and /s, z/ are known to be somewhat interchangeable since
each group has the same place of articulation. This means that
the model need not discriminate between phonemes within the
respective groups to predict an accurate lip pose.

Towards the right of Figure 4 we observe high MSE for
the velar consonants /g, k, ng/. These are articulated with the
tongue dorsum against the velum, a mechanism that occurs fully
at the rear of the mouth. Since the lips do not contribute to the
production of these sounds, they are highly influenced by visual
coarticulation.

The MSE peaks at /sp/, which denotes a short pause that oc-
curs mid-way through an utterance. Intuitively, MFCCs encode
silence or non-speech related sounds during pauses, such as in-
halation, during which the lip pose is difficult to predict. This is
especially true for pauses longer than the 340ms audio window
since no context is provided to guide the model prediction. This
prompted an investigation into the effect of phoneme duration
on accuracy.

Figure 5 shows MSE plotted against phoneme duration.
Over 90% of the phonemes in our data have a duration of 120ms
or less and a small number have a duration greater than 330ms,
which are listed on the figure. We observe a decrease in MSE

0 100 200 300 400
Phoneme Duration (ms)

40

60

80

100

120

M
SE

330ms
/sp/ (7)
/s/   (2)
/ey/ (1)

360ms
/aw/ (1)

390ms
/sp/ (1)
/s/   (1)

420ms
/sp/ (1)

Figure 5: MSE against phoneme duration in milliseconds. The
phonemes with longer durations are listed.

as phoneme duration increases up until 300ms which is around
the same duration as the acoustic input window of 340ms. This
spike contains 7 examples of /sp/, somewhat confirming the dif-
ficulty in predicting the lip pose for mid-sentence pauses of a
longer length. Across all phonemes we measure a correlation
coefficient of just 0.09 between phoneme duration and MSE, so
duration does not play a significant role in the overall quality of
audio-to-visual conversion.

4. Conclusions
In this paper we have introduced a sliding window deep neural
network model for audio-to-visual conversion, with windowed
acoustic input and visual output. The method requires no pho-
netic annotation or smoothing of the output. Prediction is fast
and results in lower mean squared error, a higher correlation co-
efficient and more perceptually realistic animation than a base-
line HMM inversion technique.

Experimentally we determined that using a 340ms acoustic
window to train a three-layer neural network to predict 100ms
visual output provided optimal results. We discovered that re-
taining 25 MFCCs gave best prediction performance. Analysis
shows that the lip pose for sibilant fricatives can most accurately
be predicted from the acoustic signal and velar consonants and
mid-sentence pauses are more difficult.

Along with the pixel intensities, the visual parameterization
encodes the shape of the actor’s mouth which can be retargeted
to graphics characters using deformation transfer for example.
Future work will focus on incorporating the proposed method
into a real-time speech driven animation pipeline.
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[16] L. D. Terissi and J. C. Gómez, “Audio-to-visual conversion via
HMM inversion for speech-driven facial animation,” in Advances
in Artificial Intelligence-SBIA 2008. Springer, 2008, pp. 33–42.

[17] L. Xie and Z.-Q. Liu, “A coupled HMM approach to video-
realistic speech animation,” Pattern Recognition, vol. 40, no. 8,
pp. 2325–2340, 2007.

[18] X. Zhang, L. Wang, G. Li, F. Seide, and F. K. Soong, “A new lan-
guage independent, photo-realistic talking head driven by voice
only.” in Interspeech, 2013, pp. 2743–2747.

[19] C. Bregler and Y. Konig, ““Eigenlips” for robust speech recog-
nition,” in Acoustics, Speech, and Signal Processing, 1994.
ICASSP-94., 1994 IEEE International Conference on, vol. 2.
IEEE, 1994, pp. II–669.

[20] P. Hong, Z. Wen, and T. S. Huang, “Real-time speech-driven face
animation with expressions using neural networks,” Neural Net-
works, IEEE Transactions on, vol. 13, no. 4, pp. 916–927, 2002.

[21] D. W. Massaro, J. Beskow, M. M. Cohen, C. L. Fry, and T. Rod-
griguez, “Picture my voice: Audio to visual speech synthesis us-
ing artificial neural networks,” in AVSP’99-International Confer-
ence on Auditory-Visual Speech Processing, 1999.
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