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Abstract
The goal of this work is to build a state-of-the-art English con-
versational telephone speech recognition system. We investi-
gated several techniques to improve acoustic modeling, namely
speaker-dependent bottleneck features, deep Bidirectional Long
Short-Term Memory (BLSTM) recurrent neural networks, data
augmentation and score fusion of DNN and BLSTM models.
Training set consisted of the 300 hour Switchboard English
speech corpus. We also examined the hypothesis rescoring
using language models based on recurrent neural networks. The
resulting system achieves a word error rate of 7.8% on the
Switchboard part of the HUB5 2000 evaluation set which is the
competitive result.
Index Terms: conversational telephone speech recognition,
deep neural networks, recurrent neural networks

1. Introduction
English conversational telephone speech (CTS) recognition sys-
tems are becoming better and better each year. This is caused
by a large number of studies carried out on the Switchboard
English task, such as [1–7]. In recent years major improve-
ment of English CTS recognition systems has been obtained
by the use of the techniques listed below. First, acoustic mod-
els (AM) based on deep neural networks (DNN) significantly
outperformed Gaussian mixture models (GMM) [1]. Sequence-
discriminative training of DNN acoustic models [2] also led to
substantial recognition accuracy improvement. Second, apply-
ing acoustic models based on convolutional neural networks or
recurrent neural networks in combination with DNN acoustic
models showed high effectiveness. Last but not least, sophisti-
cated language models (LM) based on feedforward or recurrent
neural networks demonstrated their superiority over n-gram
language models.

So, the state-of-the-art results in terms of word error rate
(WER) on the Switchboard subset of the HUB5 2000 evaluation
set were improved from about 16% in 2011 to about 12% in
2013, 10.4% in 2014 and 8% in 2015. The impressive WER
of 8% reported by IBM researchers [6] is not too far from
the human word error rate on the Switchboard English CTS
recognition task, which was estimated to be around 4% in [8].

In this work we present the study on building a state-of-
the-art English CTS recognition system. We used the approach
of finding and investigating the effective techniques and com-
bining them. The resulting system achieves the competitive
results on the HUB5 2000 evaluation set: 7.8% WER on the
Switchboard subset (which is the state-of-the-art result at the
moment as far as we know) and 16.0% WER on the CallHome
subset.

The rest of this paper is organized as follows. Section 2
presents the investigation of several techniques of acoustic
modeling improvement, namely speaker-dependent bottleneck
features, deep BLSTM acoustic models, data augmentation and
score fusion of DNN and BLSTM acoustic models. Section 3
describes the experiments on hypothesis rescoring with RNN-
based language models. Finally, Section 4 concludes the paper
and discusses future work.

2. Acoustic modeling
In this section we study several acoustic modeling techniques
which are perspective for improving English CTS recognition.
All experiments were performed on Switchboard-1 Release 2
(LDC97S62) training set. We report results in terms of word
error rate on both Switchboard and CallHome subsets of the
HUB5 2000 evaluation set.

2.1. Speaker-dependent bottleneck features

Bottleneck features are widely used in ASR systems [9, 10].
Here we present the acoustic modeling approach based on
speaker-dependent bottleneck (SDBN) features. This approach
was proposed in our previous work [11] for Russian sponta-
neous speech recognition and demonstrated high effectiveness.
The idea is to extract high-level features from DNN model,
which is adapted to the speaker and acoustic environment by the
use of i-vectors. The extracted features are applied to training
another acoustic model (see Figure 1).

Our approach consists of the following main steps:

1. Training the DNN model on the source features using the
Cross-Entropy (CE) criterion.

2. Expanding an input layer of the DNN trained at the first
step and retraining using input feature vector appended
with i-vector. The regularizing term

R = λ

L∑
l=1

Nl∑
i=1

Nl−1∑
j=1

(Wl
ij − W̄l

ij)
2 (1)

is added to the CE criterion for penalizing parameters
deviation from the source model. Here Wl and W̄l are
weight matrices of l-th layer (1 ≤ l ≤ L) of the current
and the source DNNs,Nl is the size of l-th layer, andN0

is the dimension of the input feature vector.

3. Transforming the last hidden layer into two layers. The
first one is a bottleneck layer with weight matrix Wbn,
zero bias vector and linear activation function. The sec-
ond one is a non-linear layer with the dimension of the
source layer, with weight matrix Wout and the original
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Figure 1: Speaker-dependent bottleneck approach scheme

bias vector b, activation function f and the dimension of
the source layer.

y = f(Wx + b) ≈ f(Wout(Wbnx + 0) + b). (2)

These layers are formed by applying Singular Value
Decomposition (SVD) to the weight matrix W of the
source layer:

W = USVT ≈ ŨbnṼT
bn = WoutWbn, (3)

where bn designates reduced dimension.

4. Retraining the network formed at the previous step using
the CE criterion with the penalty (1) for parameters
deviation from original values.

5. Discarding all layers after the bottleneck and extracting
high-level SDBN features using the resulting DNN.

6. Training the GMM-HMM acoustic model using the con-
structed SDBN features and generating the senone align-
ment of the training data.

7. Training the final DNN-HMM acoustic model using
SDBN features and the generated alignment.

For experiments we used the Kaldi speech recognition
toolkit [12], which contains the recipe for the Switchboard task.
The performance of models was evaluated on the Switchboard
part of HUB5 2000 evaluation set. In this experiment we used
3-gram language model (750K n-grams, vocabulary of 30.3K
words) from the Kaldi recipe. This model was trained on the
transcriptions of the Switchboard corpus only.

The DNN-HMM model from this recipe
(local/run dnn.sh) [2] was considered to be a baseline
(DNN-baseline). This DNN with 6 hidden layers with 2048
sigmoidal neurons in each and the output softmax layer
with about 9000 neurons was trained using 11 spliced 40-
dimensional fMLLR-adapted features and state-level Minimum
Bayes Risk (sMBR) sequence-discriminative criterion.

80-dimensional SDBN features were constructed using the
presented approach. We applied 100-dimensional i-vectors
extracted by the use of Universal Background Model with 512

Gaussian, which was trained with our toolset [13] on the full
Switchboard corpus. DNN training with the constructed SDBN
features (SDBN-DNN) was performed using the temporal con-
text of 31 frames taking every 5th frame. We applied the
following DNN configuration: 4 sigmoidal hidden layers with
2048 neurons in each, the output softmax layer with about 9000
neurons corresponding to senones of the GMM-HMM model,
which was trained using the same SDBN features. The training
was carried out with the sMBR criterion. For the comparison,
we also performed sMBR training of the speaker-adapted with
i-vectors DNN model (DNN-ivec). The results given in Table 1
demonstrate effectiveness of the presented approach.

Table 1: Speaker-dependent bottleneck approach results on the
HUB5 2000 evaluation set

Acoustic model SWB WER, % CH WER, %
DNN-baseline 12.9 24.5
DNN-ivec 12.5 (-0.4) 24.2 (-0.3)
SDBN-DNN 12.1 (-0.8) 23.3 (-1.2)

2.2. Bidirectional Long Short-Term Memory recurrent
neural networks

Acoustic models based on deep Bidirectional Long Short-Term
Memory (BLSTM) recurrent neural networks demonstrate high
effectiveness in various ASR tasks [7,14,15]. In this subsection
we describe our experiments with these models carried out with
nnet3 setup of the Kaldi speech recognition toolkit.

We used BLSTM architecture with projection layers de-
scribed in paper [16]. The following configuration of the
network was applied: 3 forward and 3 backward layers, cell
and hidden dimensions are 1024, recurrent and non-recurrent
projection dimensions are 128, input features are taken with the
temporal context of 5 frames. Training examples consisted of
chunks of 20 frames with additional left context of 40 frames
and right context of 40 frames. We performed 8 epochs of
cross-entropy training with initial learning rate of 0.0003 and
final learning rate of 0.00003. Model parameters were updated
using BPTT algorithm with the momentum value equal to 0.5.

We tried a few input features configurations and chose
23-dimensional log mel filterbank energy (FBANK) features.
First, we found that training data alignments prepared using
SDBN-DNN acoustic model provide substantial improvement
compared with GMM-derived alignments. Second, cepstral
mean normalization (CMN) of input features granted an addi-
tional improvement of the acoustic model. Third, we applied
speaker adaptation of BLSTM acoustic model using i-vectors
and obtained significant WER reduction. Lastly, the resulting
BLSTM was retrained using a wider chunk (80 frames) and
the same left and right contexts as used before. The retraining
provided a substantial gain, we suppose this is due to the better
network performance on longer sequences.

The main results of the experiments are summarized in
Table 2.

2.3. Data augmentation

For further improvement of our acoustic models, we tried the
data augmentation approach presented in [17]. Two additional
copies of the training data were created by modifying the speed
to 90% and 110% of the original speed. The alignments for
the speed perturbed data were generated using SDBN-DNN
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Table 2: BLSTM results on the HUB5 2000 evaluation set

Acoustic model SWB WER, % CH WER, %
baseline BLSTM 12.6 23.8

+DNN alignment 12.2 (-0.4) 22.6 (-1.2)
+CMN 12.1 (-0.5) 21.7 (-2.1)
+i-vectors 11.3 (-1.3) 21.4 (-2.4)
+retraining 11.1 (-1.5) 20.9 (-2.9)

acoustic model from subsection 2.1. We applied the augmen-
tation of the training data for both SDBN-DNN and BLSTM
acoustic models. For BLSTM model, we also applied volume
perturbation of the training data [18]: each recording was scaled
with a factor chosen randomly in range

[
1
8
, 2
]
.

As can be seen in Table 3, data augmentation provided
a considerable gain on the HUB5 2000 evaluation set. Note

Table 3: Data augmentation results on the HUB5 2000 evalua-
tion set

Acoustic model SWB WER, % CH WER, %
SDBN-DNN 12.1 23.3
SDBN-DNN + augm 11.8 (-0.3) 22.5 (-0.8)
BLSTM 11.1 20.9
BLSTM + augm 10.8 (-0.3) 20.4 (-0.5)

that for SDBN-DNN model we did not retrain the bottleneck
extractor with the augmented data.

2.4. Score fusion of SDBN-DNN and BLSTM acoustic mod-
els

Score fusion of acoustic models is a well known technique.
Its underlying idea is in combining the benefits of both dif-
ferent model architectures and different input features. In this
subsection we analyze effectiveness of this technique applied
to SDBN-DNN and BLSTM acoustic models. We used log-
likelihoods (LLH) determined by the formula

LLH = α log

(
P1(s|x)
P1(s)

)
+ (1− α) log

(
P2(s|x)
P2(s)

)
(4)

for the decoding with fusion of these acoustic models. Here
P1(s|x) and P2(s|x) are posterior probabilities of state s given
input vector x on the current frame, P1(s) and P2(s) are prior
probabilities of state s for SDBN-DNN and BLSTM models re-
spectively. We estimated prior probability of state s as average
posterior probability calculated with the corresponding model
on the training data. α value was chosen equal to 0.5. The
results of the experiments are given in Table 4. One can see the

Table 4: Score fusion results on the HUB5 2000 evaluation set

Acoustic model SWB WER, % CH WER, %
SDBN-DNN + augm 11.8 22.5
BLSTM + augm 10.8 20.4
score fusion 9.9 (-0.9) 18.9 (-1.5)

significant WER improvement obtained by the score fusion of
SDBN-DNN and BLSTM acoustic models.

3. Language modeling
In this section we describe the experiments with language mod-
els. Word lattices obtained on the decoding pass with 3-gram
LM and the best DNN+BLSTM models fusion in subsection 2.4
were taken as a starting point for these experiments.

At the first stage, we applied lattice rescoring with the 4-
gram language model (4.7M n-grams) from the Kaldi recipe.
4-gram LM was obtained by the linear interpolation of 4-gram
models trained on the transcriptions of Switchboard and Fisher
corpora. This LM had the same vocabulary as the 3-gram model
used in our previous experiments.

We also built two neural network LMs (NNLMs). We took
utterances from the transcriptions of Switchboard and Fisher
corpora, shuffled them and replaced Out-Of-Vocabulary words
with <UNK> token. These utterances were divided into two
parts: a valid set (20K utterances) and a train set (all other,
about 2.5M utterances). The transcriptions of the HUB5 2000
evaluation set were used as a test set.

Table 5: Perplexity results on the train, valid and test data

Language model PPL train PPL valid PPL test
4-gram (baseline) 66.366 62.946 87.039
RNNLM 57.982 78.578 76.123
LSTM-LM (medium) 51.104 58.964 56.822
LSTM-LM (large) 46.033 54.821 52.892

The first NNLM was Recurrent Neural Network Language
Model (RNNLM) [19]. It was shown that RNNLM significantly
outperforms n-gram LM in various speech recognition tasks. In
particular, the results demonstrated by RNNLM in the English
CTS recognition task can be found in the paper [20]. We trained
our model using Mikolov’s RNNLM Toolkit [21]. We applied
the following RNNLM configuration: 256 neurons in the hid-
den layer, 4 × 200 MB of direct connections. To speed-up the
training we used the factorized output layer with 200 classes.

Table 6: Rescoring results on the HUB5 2000 evaluation set

Language model SWB WER, % CH WER, %
3-gram (SWB) 9.9 18.9
4-gram (SWB+FSH) 9.1 (-0.8) 17.6 (-1.3)
RNNLM 8.4 (-1.5) 16.8 (-2.1)
LSTM-LM (medium) 8.0 (-1.9) 16.2 (-2.7)
LSTM-LM (large) 7.8 (-2.1) 16.0 (-2.9)

The second NNLM was LSTM recurrent neural network
LM (LSTM-LM) trained with dropout regularization [22]. This
model demonstrated state-of-the-art results in terms of perplex-
ity (PPL) on the English Penn Treebank data set.

The architecture of this LSTM-LM model with L layers is
given by the following equations [22]:

LSTM : hl−1
t , hl

t−1, c
l
t−1 → hl

t, c
l
t, (5)

ilt
f l
t

olt
glt

 =

sigm
sigm
sigm
tanh

T2n,4n

(
D(hl−1

t )
hl
t−1

)
, (6)

clt = f l
t � clt−1 + ilt � glt, (7)

hl
t = olt � tanh(clt). (8)
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Table 7: WER comparison with existing English CTS recognition systems on the HUB5 2000 evaluation set

System AM training data LM training data SWB CH
Vesely et al. [2] SWB SWB,FSH-1 12.6 24.1
Hannun et al. [5] SWB,FSH SWB,FSH 12.6 19.3
Peddinti et al. [18] SWB SWB,FSH 11.0 —
Soltau et al. [4] SWB SWB,FSH 10.4 19.1
Mohamed et al. [7] SWB,FSH,other SWB,FSH,other 9.2 —
Saon et al. [6] SWB,FSH,CH SWB,FSH,CH 8.0 14.1
This system SWB SWB,FSH 7.8 16.0

Here hl
t, c

l
t, i

l
t, f

l
t , o

l
t, g

l
t ∈ Rn denote hidden state, memory

cell state and the activations of input gate, forget gate, output
gate and input modulation gate in layer l ∈ [1, L] at time
t, respectively; h0

t ∈ Rn is an input word vector at time t;
T2n,4n : R2n → R4n is a linear transform with a bias; D is the
dropout operator that sets a random subset of its argument to
zero; symbol � denotes element-wise multiplication. Logistic
(sigm) and hyperbolic tangent (tanh) activation functions in
these equations are applied element-wise. Activations hL

t ∈ Rn

are used to predict the word at time t.
We used the Tensorflow toolkit [23] to train this model. We

trained two LSTM-LMs: “medium” (2 layers with 650 units
each, 50% dropout on the non-recurrent connections) and
“large” (2 layers with 1500 units each, 65% dropout on the non-
recurrent connections) configurations from the paper [22]. For
the “large” model forget gate biases were initialized with value
of 1.0. Training on NVIDIA GTX Titan X GPU took 40 hours
for the “medium” network and 146 hours for the “large” one.

The perplexity values of these LMs on the train, valid and
test data are given in Table 5. Note that valid PPL of the baseline
4-gram model is low due to the presence of valid texts in the
training data for this LM.

Both the trained NNLMs were applied for the hypothesis
rescoring. We generated 100-best lists from the 4-gram rescored
lattices using Kaldi scripts. For the rescoring we took the
weighted sum of n-gram LM and NNLM scores. The results of
the rescoring are given in Table 6. It can be seen that RNNLM
provided substantial improvement over n-gram LM, as well as
LSTM-LM over RNNLM.

4. Discussion
The architecture of our system is depicted in Figure 2. In
Table 7 we present the results of comparison with existing
English CTS recognition systems. For clarity, we also specify
the data used for training acoustic and language models for
each system. Our system achieves the competitive results on
the HUB5 2000 evaluation set: 7.8% WER on the Switchboard
part (which is the state-of-the-art result at the moment as far
as we know) and 16.0% WER on the CallHome part. Note that
acoustic models used in the system were trained only on the 300
hour Switchboard English CTS corpus.

We consider several ways of further improvement of our
system. First, a great accuracy gain can be obtained by adding
Fisher and CallHome corpora into the AM training set. Second,
sequence-discriminative training of BLSTM acoustic models
can lead to substantial WER reduction [24]. Third, retraining
the SDBN extractor with the augmented data can provide ad-
ditional improvement. Last but not least, we plan to carry out
experiments with other promising language model architectures
such as Character-Aware Neural Language Models [25], End-

To-End Memory Networks [26] and others. We are going to
investigate more complicated approaches of applying sophisti-
cated language models than simple n-best rescoring as well.

Figure 2: System architecture
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