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Abstract
This paper introduces the methods we adopt to build our
system for the evaluation event of Voice Conversion Challenge
(VCC) 2016. We propose to use neural network-based
approaches to convert both spectral and excitation features.
First, the generatively trained deep neural network (GTDNN)
is adopted for spectral envelope conversion after the spectral
envelopes have been pre-processed by frequency warping.
Second, we propose to use a recurrent neural network (RNN)
with long short-term memory (LSTM) cells for F0 trajectory
conversion. In addition, we adopt a DNN for band aperiodicity
conversion. Both internal tests and formal VCC evaluation
results demonstrate the effectiveness of the proposed methods.
Index Terms: voice conversion, frequency warping , DNN,
RNN, LSTM

1. Introduction
Voice conversion (VC) is a technique that modifies the speech
characteristic of a source speaker in order to make it sounds
like being uttered by the target speaker. This technique can
also be applied to many other relevant areas, such as speech
enhancement [1], foreign language learning [2], and so on.

Most of the mainstream voice conversion methods consists
of two parts: spectral conversion and prosody conversion. As
spectra directly convey most of the timbre characteristics of a
speaker, many approaches that focused on spectral conversion
have been proposed. In the early methods, such as codebook
mapping based methods [3], the generated speech was always
discontinuous due to the hard clustering and discrete mapping
of spectral features. In order to cope with this problem,
Gaussian mixture model (GMM) based methods were proposed
for soft clustering and continuous mapping of spectral features
[4, 5]. In these methods, the features of source speaker’s
spectral sequence were converted frame by frame. Thus, they
did not consider the continuous sequential nature of spectral
features. Considering this, Toda et al. proposed to model
the spectral features with dynamic components [6]. In this
method, maximum likelihood parameter generation (MLPG)
method was adopted to generate the converted spectral feature
trajectories. Global variances (GVs) of feature trajectories were
also considered and modeled in order to alleviate the over-
smoothing problem of converted acoustic features.

This work was partially funded by the National Nature Science
Foundation of China (Grant No.61273032) and the Electronic Industry
Development Fund of Ministry of Industry and Information Technology
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In recent years, deep neural networks (DNNs) have been
successfully applied to many areas of speech processing, such
as automatic speech recognition (ASR) [7] and statistical para-
metric speech synthesis (SPSS) [8]. DNNs have the advantage
of modeling complex non-linear functions. Therefore, they
have also been applied to voice conversion to describe the
mapping relationship between source and target speakers. Chen
et al. proposed to use restricted Boltzmann machines (RBMs)
to model the joint distribution of source and target feature
spaces [9]. A combination of deep belief networks (DBNs) and
neural networks was introduced by Nakashika et al. in order
to build the spectral mapping in a high-order eigenspace [10].
Nakashika et al. also proposed to use recurrent temporal
RBM to model the temporal correlations across sequential
frames [11]. Sun et al. proposed to use the bi-directional LSTM
based RNN to model temporal dependencies among frames in
a time sequence [12].

On the other hand, prosody feaures, such as fundamental
frequency (F0), duration, intensity, etc., also contain important
speaker characteristics. Since it is difficult to model these
features without linguistic information, most of the current
voice conversion methods only use a simple F0 conversion,
which is a Gaussian normalization process that linearly converts
F0 values of the source speaker in log-scale to match that of the
target speaker. However, this simple conversion is insufficient
to convert speaker’s prosody characteristics.

In this paper, we introduce the methods we used to
build our system for Voice Conversion Challenge 2016 (VCC
2016). The task of VCC 2016 consists of speaker conversion
of 25 source-target speaker pairs. We use neural network
based methods for both spectral conversion and excitation
conversion. The generatively trained deep neural network
(GTDNN) is utilized for spectral conversion. A bilinear
transformation based frequency warping method is adopted
as a pre-processing of source spectral envelopes to improve
conversion performance. The excitation conversion includes
F0 conversion and aperiodicity conversion. A combination of
the LSTM-RNN based trajectory conversion and the Gaussian
normalization method is proposed for converting F0 sequences.
And a DNN is adopted to convert the aperiodic components.
Experimental results demonstrate the improvement obtained by
using these methods.

2. Methods
2.1. Spectral Conversion

We adopt the generatively trained DNN (GTDNN) for spectral
envelope conversion in our system. Although previous
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work [13] showed that GTDNN can significantly improve
the performance of spectral conversion comparing with con-
ventional GMM based method, it is still difficult to obtain
a good spectral conversion function for source-target pairs
that have large differences on spectral characteristics. For
instance, the degraded conversion performance is usually
obtained in the cases of cross-gender conversions. In order
to improve the conversion performances for such cases, we
propose a combination of frequency warping and GTDNN-
based conversion. The frequency warping is conducted as a
pre-processing to the spectra of source speaker in order to
reduce the spectral differences between input spectra and target
spectra for GTDNN. Therefore, it would be relatively easier
for the GTDNN model to learn the mapping function between
the warped source spectra and the target spectra. The warping
factor of the bilinear transformation [14] based frequency
warping is optimized by a grid searching in the mel-cepstral
space, i.e., we traverse all frequency warping factors and use the
best value that can minimize the mel-cepstral distortion between
the warped mel-cepstra and the target ones.

2.2. Excitation Conversion

2.2.1. F0 Conversion

The Gaussian normalization based method for F0 conversion
has the advantage of preserving the natural F0 trajectory
contour of source speech, leading to highly natural prosody
in converted speech. However, this method is only a simple
frame-wise linear model for logF0 conversion. It can only
convert the range of F0 and cannot reshape F0 contours, which
contains a lot of speaker characteristics. Besides, the F0

features extracted from source speakers always contain errors,
such as half frequency and double frequency. The Gaussian
normalization method can not handle this issue when generating
the F0 features of target speakers.

In order to cope with the problems, we propose to use
RNNs with LSTM units (LSTM-RNN) for F0 trajectory trans-
formation. The long-term dependencies in the F0 trajectory can
be captured by RNNs because of the recurrent characteristic
of hidden units. Comparing with the Gaussian normalization
method, this model can reshape F0 trajectories and convert
the local characteristics in F0 contours. In addition, F0

values predicted by LSTM-RNNs would be more robust to
the errors of F0 extraction, because the model can achieve
temporal smoothing when generating output sequences due
to the cross-frame dependency modeling. In this paper, an
LSTM-RNN with linear output layer for regression is used
to predict static F0 values together their corresponding delta
and acceleration components. Then the MLPG algorithm was
applied to generate the converted F0 sequences.

In our experiments we observed that the F0 trajectories
generated using the LSTM-RNN model tend to be over-
smoothed. This greatly affects the naturalness of converted
speech. This issue may be caused by the insufficient number
of training samples in voice conversion for training the LSTM-
RNN model. In order to address this issue, we propose
to combine the Gaussian normalization and the LSTM-RNN
conversion method. It is implemented by adding a constraint
describing the difference between the generated F0 trajectory
and the Gaussian normalized F0 trajectory into the cost function
for MLPG. Supposing the mapping function constructed by
the LSTM-RNN is denoted as Y = g(X), where X =
[X>1 ,X

>
2 , ...,X

>
T ]> and Y = [Y >1 ,Y >2 , ...,Y >T ]> are the

input and output feature sequences, respectively. Meanwhile,

let ŷ = [ŷ>
1 , ŷ

>
2 , ..., ŷ

>
T ]> represents the static F0 sequence

generated by Gaussian normalization method. Then, the F0

trajectory generated by the proposed method is

y∗ = argmin
y

(−logP (Y |X,λ) + α · |y − ŷ|2), (1)

where Y =My, and P (Y |X,λ) is a Gaussian distribution

P (Y |X,λ) = N(·; g(X),Σg), (2)

whose mean vector is given by the output of the LSTM-RNN
and its covariance matrix is diagonal and given by the global
variance of target F0 features. α is a factor that needs to be
tuned. The proposed method can be viewed as a trade-off
between the Gaussian normalization and the LSTM-RNN based
conversion.

The characteristics of F0 features are strongly correlated
with linguistic information. Since transcriptions and phoneme
alignment are not available for most voice conversion tasks as
well as in this challenge, the bottleneck features (BNs), which
are initially designed for ASR [15] and are assumed to be
strongly related to phone categories, are used as a part of the
input features for the construction of the LSTM-RNN based
F0 conversion model in this paper. In our implementation, the
DNN for extracting BNs was trained with a 2000-hour speech
corpus [16]. The BN layer in the DNN was the last hidden layer
and the dimensionality of BN features was 50.

2.2.2. Aperiodicity Conversion

On the other hand, the aperiodicity (AP) components of
the excitation also conveys important information of speaker
individuality. There are normally two ways to handle AP
in voice conversion. The first one directly uses the AP of
source speaker to synthesize converted speech [17, 12, 18].
The second one performs model based band aperiodicity (BAP)
conversion, e.g., GMM based mapping. In our system a DNN
is adopted as a regression model to capture the non-linear
mapping relationships between BAPs of source speaker and
target speaker. The DNN is trained in a conventional way using
the back propagation (BP) algorithm.

3. Internal Experiments
3.1. Experimental Setup

The VCC 2016 event provided an English corpus consisting of 5
source speakers (3 female and 2 male, named as SF1, SF2, SF3,
SM1, SM2) and 5 target speakers(2 female and 3 male, named
as TF1, TF2, TM1, TM2 and TM3). Each speaker uttered the
same sentence set consisting of 162 sentences. The waveforms
were recorded with 16kHz/16bit format. We randomly chose
150 sentences for training and the remaining 12 sentences were
left for test in our internal experiments. The STRAIGHT [19]
vocoder was used to extract acoustic features, including F0,
BAP, and spectral envelope, and to synthesize speech waveform
using converted acoustic features. The acoustic features were
extracted at a frame shift of 5ms. The length of FFT was set
to 1024, leading to 513-dimension spectral envelopes. The
alignment between acoustic feature sequences of the source
speaker and the target speaker was obtained using dynamic time
warping (DTW) algorithm.

For spectral conversion, the GTDNN-based spectral con-
version module was constructed following the configuration in
[13]. The originalF0 sequences were interpolated to continuous
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Table 1: Preference scores (%) on naturalness (Nat.) and
similarity (Sim.) of systems with and without frequency
warping (FW) based pre-processing.

w/o FW w. FW N/P p-value

Nat.

F2F 32.58 25.76 41.66 0.307
F2M 13.64 31.82 54.54 0.002
M2F 17.50 33.33 49.17 0.014
M2M 17.42 37.12 45.46 0.002

Sim.

F2F 25.76 22.73 51.51 0.619
F2M 16.67 25.00 58.33 0.138
M2F 14.17 31.67 54.16 0.004
M2M 22.73 34.85 42.42 0.066

F0 sequences using an exponential decay function [20] for
training LSTM-RNN. The input features consisted of 50-order
BN features and 3-order logF0 (i.e. the static, delta and
acceleration components) of the source speaker. The network
outputs the converted logF0 sequences together with their
delta and acceleration components. Both the input and output
features were normalized to zero mean and unit variance before
training. An LSTM-RNN with one uni-directional hidden
recurrent layer of 32 LSTM cells was used in our experiments
It was trained using back propagation through time (BPTT)
algorithm with 5 frame delay to consider future dependencies.
The learning rate was 0.01. α in (1) was set to 0.3. The DNN
for BAP conversion had two hidden layers, each of which had
128 nodes. The input feature consisted of 16-order mel-cepstra,
logF0 and 5-order BAP of the source speaker. The original
logF0 values without interpolation were used directly as input
in order to incorporate the voicing/unvoicing information for
BAP conversion. In addition, a context window of 3 frames
(i.e. previous, current and next) was adopted for composing
input features for DNN training.

3.2. Subjectitve Evaluation on Frequency Warping Based
Pre-processing

A preference listening test was conducted to evaluate the
performance of the frequency warping based pre-processing for
spectral envelope conversion. All the internal listening tests
in this paper were conducted on the Amazon Mechanical Turk
(AMT) 1, a crowd-source platform. Four conversion pairs, each
of which was randomly chosen from female-to-male (F2M),
female-to-female (F2F), male-to-male (M2M), and male-to-
female (M2F) conversion types respectively, were used for
the test in this experiment. 10 subjects participated in each
of these tests. The results on similarity and naturalness are
presented in Table. 1. It can be seen that frequency warping
can help to improve both the similarity and naturalness of
the speech generated using GTDNN-based spectral conversion.
The similarity of M2F was significantly improved and all
naturalness was significantly improved except for F2F. We
found that the estimated frequency warping function for F2F
conversions were close to linear mapping in our experiments.

3.3. Subjective Evaluation on BAP Mapping

In this section, two systems were compared: the one with
BAP conversion and the one that didn’t use BAP for synthesis
speech. 10 paid native English speakers from the AMT

1https://www.mturk.com

Table 2: Preference scores (%) for the evaluation of BAP
mapping.

w/o BAP. w/ BAP conv. N/P p-value

Nat.

F2F 34.85 37.12 28.03 0.759
F2M 25.76 31.06 43.18 0.421
M2F 31.67 40.00 28.33 0.282
M2M 13.33 44.17 42.50 0.000

Sim.

F2F 33.33 36.36 30.31 0.678
F2M 17.42 29.55 53.03 0.041
M2F 26.67 25.00 48.33 0.800
M2M 14.17 38.33 47.50 0.000

Table 3: RMSEs (Hz) of two F0 conversion methods between
each source speaker (row) and each target speaker (column).

SF1 SF2 SF3 SM1 SM2

Gauss.

TF1 46.38 40.03 39.79 35.06 45.63
TF2 44.46 32.91 37.39 39.20 35.80
TM1 22.18 21.17 19.61 22.34 17.92
TM2 15.16 16.56 14.34 15.04 15.11
TM3 23.45 21.58 21.89 22.19 24.15

LSTM

TF1 34.68 35.24 35.73 31.45 36.16
TF2 33.93 31.18 36.29 35.11 32.27
TM1 16.77 18.89 19.35 18.48 17.46
TM2 12.95 14.63 14.33 12.96 13.42
TM3 18.47 19.83 21.25 19.77 20.49

listening platform participated in these tests. Results in Table
2 showed that the naturalness was improved for all conversion
types by adopting BAP mapping, even if the improvement was
only significant for M2M. The proposed BAP mapping can
improve the similarity of converted speech except M2F, and the
improvement was significant for F2M and M2M.

3.4. Evaluation on LSTM-RNN Based F0 Conversion

3.4.1. Objective evaluation

Firstly, we compared the root mean square errors (RMSEs)
of the LSTM-RNN based F0 trajectory mapping and the
conventional Gaussian normalization based conversion method.
The results of all the 25 conversion pairs are presented in Table
3. It can be seen that the RMSEs of LSTM-RNN is consistently
decreased compared with the conventional method except for
the SM2-TM1 conversion pair. The average RMSE reduction
after using the LSTM-RNN based method is 3.45 Hz, relatively
12.54% reduction from 27.49 Hz to 24.04 Hz.

3.4.2. Subjective evaluation

Preference listening tests were conducted to evaluate the
performance of the proposed LSTM-RNN based method and
the Gaussian normalization method. 10 conversion pairs,
covering all four conversion types , were selected for evaluation.
Both naturalness and similarity were evaluated in the tests. 10
paid native English speakers participated in these tests via the
AMT platform. Results presented in Table 4 show that the
proposed method achieved better speech naturalness on M2F
and M2M conversion pairs, while the listeners preferred to
voices converted by the baseline method on F2F and F2M. It
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Table 4: Preference scores (%) for comparing two F0

conversion methods.

Gauss. LSTM N/P p-value

Nat.

F2F 36.36 35.99 27.65 0.942
F2M 30.81 23.74 45.45 0.056
M2F 23.11 35.99 40.90 0.006
M2M 26.04 34.38 39.58 0.029

Sim.

F2F 29.92 44.70 25.38 0.005
F2M 31.82 24.75 43.43 0.061
M2F 22.73 23.48 53.79 0.014
M2M 27.16 29.69 43.15 0.638

can also be seen that the similarity of the voices converted by
the proposed method were significantly improved on F2F and
M2F. Although there were improvements on M2M, the results
were not significant. In addition, the baseline method got better
speaker similarity on F2M.

4. Evaluation of VCC 2016
According to our internal experimental results, we applied
different strategies for different conversion pairs. Firstly, BAP
conversion was only applied to the pairs with male target; for
the others, BAP features were not used. Secondly, LSTM-
RNN basedF0 conversion was adopted for the pairs with female
source speaker; Gaussian normalization was adopted for other
pairs.
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Figure 1: Scatter plot of overall similarity and naturalness
scores for all systems in VCC 2016.

The overall naturalness and similarity scores announced by
event organizers are plotted in Figure 1. For the convenience
of analysis, only the binary similarity scores are used. It can
be seen that our system (system O) locates in the area of the
top systems, which proves the effectiveness of our method.
According to the results significance analysis, system K and
system N are significantly better than our system on naturalness.
However their similarity scores are relatively lower. There is no
significant difference among our system and system J and L. In
the similarity evaluation, although system A, D, G, J and P get
higher similarity score than our system, significance analysis
shows no significant difference between our system and each of
these systems.
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Figure 2: Scatter plot of scores of intra-gender conversion.
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Figure 3: Scatter plot of scores of cross-gender conversion.

Figure 2 shows the scatter plot of intra-gender (F2F and
M2M) conversions, and Figure 3 shows that of cross-gender
(M2F and F2M) conversions. It shows that our system performs
well on cross-gender conversion. In intra-gender conversion,
our system also worked well on M2M, however it didn’t work
well on F2F. As introduced above, we didn’t apply any proposed
excitation conversion methods on F2F conversion according
to the results of our internal listening test which may not use
enough test sentences to get reliable results.

5. Conclusions
In this paper, we presented the details of our system for VCC
2016. We built a system that utilized neural networks for
conversions of all acoustic features. GTDNNs were adopted for
spectral envelope conversion. Frequency warping was used as
a pre-processing of the source spectra in order to promote the
conversion performance of GTDNNs. We also introduced to
use LSTM-RNNs to realize F0 trajectory conversion. Besides,
DNNs were used for BAP conversion. Internal experiments
and formal evaluation results showed the effectiveness of our
system. However, our system didn’t perform well on F2F
conversion. To improve the robustness of our method will be
the future work. We also plan to find a unified model to convert
all features simultaneously instead of using separate models.
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