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Abstract
Recently, attention mechanism based deep learning has gained
much popularity in speech recognition and natural language
processing due to its flexibility at the decoding phase. Through
the attention mechanism, the relevant encoding context vectors
contribute a majority portion to the construction of the decoding
context, while the effect of the irrelevant ones is minimized. In-
spired by this idea, a speech emotion recognition system is pro-
posed in this work for an active selection of sub-utterance rep-
resentations to better compose a discriminative utterance repre-
sentation. Compared to the baseline of a model based on the
uniform attention, i.e. no attention at all, an attention based
model improves the weighted accuracy by an absolute of 1.46%
(and relative 57.87% to 59.33%) on the emotion classification
task. Moreover, the selection distribution leads to a better un-
derstanding of the sub-utterance structure in an emotional utter-
ance.
Index Terms: attention mechanism, speech emotion recogni-
tion

1. Introduction
Emotion plays an important role in our daily lives for effective
communication. The affective information is often encoded and
conveyed through various forms of human behavioral signals
[1], including speech, facial expression, (body) language and so
on. Emotion recognition aims at decoding the emotional infor-
mation based on the corresponding multimodal cues. Speech
emotion recognition, focused on characterizing the emotional
content from the audio signals, has been an active research topic
during the last several years [2, 3]. Despite the advances in the
field, it is still a challenging task with considerable room for
improvement.

Due to the subtlety in human emotion, the type of acous-
tic features that effectively characterize the affective content in
speech is still an open question [4, 5]. With recent advances in
machine learning, deep neural network (DNN) has emerged as
a powerful tool for pattern classification. In particular, DNN is
well-known for its ability to extract high-level representations
layer by layer. For example, Han et al. [6] employed a DNN to
learn the high-level representations of sub-utterances. A DNN
is deep in the model architecture for affording enhanced expres-
siveness, but it does not consider the temporal information em-
bedded within data.

On the other hand, human emotion is context sensitive with
long-range time dependencies. In this context, better modeling
of emotion requires an architecture that explicitly takes into ac-
count its sequential nature. Metallinou et al. [7] demonstrated
that a bi-directional recurrent neural network (RNN) with the
long-short term memory gating mechanism (BLSTM) is capa-

ble of capturing these long-term dependent contextual affec-
tive information in a sequence of consecutive utterances. More
recently, Lee et al. [8] proposed an algorithm based on the
connectionist temporal classification (CTC) approach to extract
frame level representations with regard to its dynamics within
an utterance. These studies highlight the potential of the emerg-
ing NN architectures in capturing temporal details of emotion
expression.

Many speech emotion corpora however provide only utter-
ance level annotations. Speech emotion recognition systems
usually have to provide an output to the utterance-level, because
of the utterance-based annotation of many speech emotion cor-
pora. Recent, Ghosh et al. [9] proposed to pre-train each frame
directly from spectrograms with a deep auto-encoder rather
than using the Mel-Frequency Cepstral Coefficients (MFCC).
A BLSTM and a multi-layer perceptron are trained on the bot-
tleneck layer activations. This work indicated that the average
of hidden vectors at the output of a BLSTM is more discrimi-
native as an utterance representation, compared to the conven-
tional choice of the hidden vector at the last time step.

Although the annotation is given at the utterance level, not
all frames within an utterance contain the relevant emotion con-
tent, which may be unevenly distributed even among the frames
containing emotional information. The recent development in
attention mechanism based deep learning [10, 11, 12] adds an-
other functionality to the RNN architecture specifically for ad-
dressing problems with a correlated structure between the input
and the output sequences. The key idea behind the attention
mechanism is to soft/hard align the input-output sequences so
that in the decoding phase the major contribution of the context
comes from the corresponding encoded information. Speech
emotion recognition at the utterance level can be formulated as
a many-to-one sequence-to-sequence learning, where the input
sequence is the stream of acoustic frames and the output se-
quence is the emotion label. In this scenario, the average of
hidden vectors suggested in [9] becomes a special case of the
attention mechanism, i.e. the uniform attention or no attention
at all.

In this work, we apply attention mechanism based BLSTM
modeling to speech emotion recognition. Our hypothesis is that
such a model would result in a more discriminative utterance
representation than the one provided by a model without the
attention mechanism. In addition, we will study the structure
within the sequence of frames in the composition of an utterance
representation.

The outline of this paper is as follows. The next section
covers an overview of related work in detail. In the third section
we will introduce the proposed algorithm, followed by a section
devoted to the experiments. The last section will conclude with
our findings.
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2. Related Work
Deep models, already the state-of-the-art in many areas includ-
ing speech recognition and computer vision, have been also suc-
cessfully applied to the emotion recognition task. Han et al. [6]
proposed a DNN-ELM algorithm for speech emotion recogni-
tion in two steps; the first part extracts the high-level represen-
tations of the high-energy segments within an utterance, where
a segment is defined to be 265 ms long in order to have enough
context. Choosing the high-energy segments is based on the as-
sumption that only these segments carry the relevant emotion
information. These segments also share the same label with the
utterance they belong to. A DNN trained on these segments pre-
dicts a softmax distribution over emotion classes per segment,
which is then regarded as a high-level representation of the seg-
ment. The second part forms the utterance representation by
aggregating the statistical functionals estimated from these sub-
utterance representations. An extreme learning machine (ELM)
then maps each utterance representation to an emotion state.

However, emotion can be manifested in speech through a
long and variable range of temporal dependencies. A simple
fixed-length segment may be insufficient for describing the dy-
namics. Lee et al. [8] employed a BLSTM model with a CTC
loss function to encode the temporal information into the frame
representations. In essence, a BLSTM transforms the sequence
of frames in an utterance into a sequence of high-level represen-
tations bearing with the contextual information. The CTC loss
function serves the purpose of integrating out all possible align-
ments between the frames and the sequence of Null and Emo
labels. Similarly, certain statistical functionals of these sub-
utterance representations form the utterance representation, and
the classification task is carried out by a following ELM. Per-
haps our work is most similar to Lee et al.’s, but there are sev-
eral fundamental differences we would like to underscore. First
of all, the CTC approach probabilistically minimizes the align-
ment mismatch via the maximum a posteriori inference while
the attention mechanism is deterministic, which could result in
a non-monotonic alignment and is therefore open to more fu-
ture applications [10]. Second, in order to generate all possible
alignments, the authors assumed that at least one frame in each
voiced region contains the relevant emotion information and a
Markovian property for the label transition within a voiced re-
gion. The attention mechanism does not rely on such assump-
tions. Last but not the least, they focused on learning the frame-
level contextual representations constrained by the assumption,
and constructed the utterance representation via statistical func-
tionals, whereas our goal is to study the feasibility of an end-to-
end emotion recognition system and to compare BLSTM mod-
els with and without the attention mechanism in the formation
of the utterance representations.

A recent work by Ghosh et al. [9] found that the average of
all context representations is more indicative of emotion states
than the one at the last time step. Either letting the algorithm
to passively accumulate the utterance information into the last
hidden vector or building the utterance representation in an un-
informed way via averaging over all hidden vectors may not be
the optimal approach. We hypothesize that an attention mecha-
nism based model could actively help with a structurally mean-
ingful composition of the utterance representation.

3. Proposed Algorithm
Sequence to sequence learning based on the RNN/LSTM archi-
tecture has become one of the most popular models in dealing
with sequential data. Suppose the input and output sequences
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Figure 1: A diagram of the encoder-decoder framework

of equal length are (x1, · · · ,xT ) and (y1, · · · ,yT ), respec-
tively. A single-layer RNN can be characterized by these two
equations:

ht = σh(Whxxt + Whhht−1), (1)

yt = σy(Wyhht), (2)

where σh and σy are activation functions. The hidden vector,
ht, is the cell state of a RNN at time t, exemplifying the mem-
ory stored in the model. The matrices Wba indicate the trans-
formations from a vector of type a to a vector of type b. Here,
the superscripts x, h and y stand for the types of input, hid-
den and output vectors, respectively. To allow the input and
the output sequences to have different lengths, Cho et al. [13]
and Sutskever et al. [14] came up with the so-called encoder-
decoder framework. This framework first maps the input se-
quence to a fixed dimensional vector as a representation for the
entire sequence, called the context vector c. The mapping from
an input sequence to its context vector is referred to as an en-
coder RNN/LSTM. From there on, a decoder RNN/LSTM takes
the context vector as its input and generates the output sequence
conditioned on the context vector. In the equations above, hT is
regarded as the context vector c for it being a non-linear func-
tion of the entire input sequence. Fig. 1 describes the encoder-
decoder framework, where si is the cell state of the decoder.

Speech emotion recognition can be formulated as a many-
to-one sequence to sequence learning problem, where the input
sequence is the stream of frames in an utterance, and the output
sequence is the predictive distribution of the emotion states and
of length one. One immediate advantage of this formulation
is to encapsulate the modeling process from the sub-utterance
level to the utterance level representations in a systematic way,
rather resorting to statistical functionals. This opportunity to-
ward an end-to-end system is actually one attractive point the
attention mechanism offers [10]. Another potential advantage
may be the future accommodation for more diverse tasks, where
speech emotion recognition could serve as a building compo-
nent of a larger system.

In spite of the merit of a minimal assumption on the se-
quence structure, Sutskever et al. [14] found that reversing the
the input order improves the performance for free. This phe-
nomenon stems from the learning mechanism in the LSTM ar-
chitecture. Notice the term Whhht−1 in Eq. (1). At every step
into the time, the memory stored in the cell state is scaled by a
matrix Whh. Therefore, hT is more representative of xT and
less of previous inputs. Since the decoding is in the order of
time, this choice of a context vector would demand a very long
term memory if the length of the input sequence is long. By
reversing the input order, hT explicitly exploits the sequence
structure to be a more suitable candidate as a context vector.
But, hT is not the only way to make a context vector.
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3.1. Baseline: Uniform Attention based BLSTM model

One variant of the LSTM architecture is to equip it with bi-
directional information, i.e. memory from both the past and the
future, where the hidden vector at time step t is the concatena-
tion of those vectors from both directions. A BLSTM generally
outperforms a LSTM when the amount of training data is suffi-
cient, and hence the BLSTM architecture is gradually becoming
the new standard. With a BLSTM it does not matter which order
the input sequence is.

We can view these previous options for constructing the
context vector as instances of a passive approach, where the
algorithm accumulates the information in the cell state until the
end of input sequence. On the other hand, an active alterna-
tive should be able to effectively select the semantically relevant
hidden vectors ht from all of the time steps. In this regard, per-
haps to take the average of these hidden vectors ht is the most
simplistic option. Despite its simplicity, Ghosh et al. [9] found
it superior than the passive approach based on a BLSTM.

We will take this model as our baseline in this work. Since
averaging amounts to an application of the uniform distribution,
that is, an uninformed prior, we call this model the uniform at-
tention based model, implying no attention at all.

3.2. Attention mechanism based BLSTM model
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Figure 2: The subplot (a) depicts the working process of the
attention mechanism at the moment of decoding the output yi.
The subplot (b) describes the application of the attention mech-
anism to speech emotion recognition.

Attention mechanism based recurrent neural network has
found its application in a variety of sequence to sequence learn-
ing tasks, including speech recognition [10], machine traslan-
tion [11], part-of-speech tagging [12], to name just a few.
The basic idea is to select relevant encoded hidden vectors
through an informative sequence of weights, called the attention
weights, in the decoding phase. Such an architecture provides
an opportunity toward building an end-to-end system, which is
already a popular research topic in speech recognition.

In the setting of the attention mechanism, the context vec-
tor c is no longer static through the whole decoding iterations.
Therefore, for decoding each output yi, the corresponding con-
text vector is denoted as ci with a subscript index i to highlight
the variability at each time step. Fig. 2a illustrates the working
process of the attention mechanism at the moment of decoding
the output yi, where the sequence of ht is the hidden vectors
of a BLSTM at each time step, the sequence of αt,i the atten-
tion weights for composing the context vector ci, and si the
cell state of the decoder LSTM. The Σ notation stands for the
summation as usual.

The decoding of the i-th output yi relies on the relevant
context ci. Borrowing a similar set of notations from [10], we

can summarize them symbolically:

αi = Attend(si−1, αi−1,h), (3)

ci =

T∑
t=1

αt,iht, (4)

yi = Generate(si−1, ci). (5)

In the formulation of speech emotion recognition, the out-
put sequence has a length of one, and thus Eq. (3, 5) can be
simplified into

α = Attend(h), (6)
y = Generate(c), (7)

while Eq. (4) remains unchanged. The Attend() function learns
the attention weights based on the input sequence of ht and the
Generate() function symbolizes the decoder. Moreover, since
the output consists of no temporally dependent structure in it-
self, the decoder need not to be a recurrent neural network. In-
stead, a DNN should suffice. To be noted, the attention mech-
anism is still in its burgeoning stage and there has not been a
conventionally converged view on the implementation of the
attention mechanism. Chorowski et al. [10] proposed to dis-
tinguish three different implementations of the attention mech-
anism: the location-based, content-based and hybrid attention
mechanisms. Limited by the simplicity of the output sequence,
the content-based approach is the only viable one in this study
as described by Eq. (6).

The content-based attention weights in our work follow the
implementation in the literature [10, 12]

αt = softmax((wa)Tσa(Wahht)). (8)

We further simplified the formula into:

αt = softmax((wa)Tht) (9)

by removing the intermediate hidden layer. The need for a fur-
ther simplification is simply to prevent over-fitting. The extra
component for computing the attention weights has the number
of parameters proportional to the length of the input sequence.
Therefore it is rational to simplify its architecture as long as the
spirit of the attention mechanism remains. On the output side,
we employed a decoder DNN for generating the output emo-
tion state. Fig. 2b gives a diagram of the attention based speech
emotion recognition system.

4. Experiments
To evaluate the effectiveness of the proposed algorithm, we per-
formed our experiments on the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) database [15]. IEMOCAP con-
sists of rich information about speech, facial expressions and
hand gestures of ten actors in dyadic sessions. The actors were
asked to perform selected emotional scripts and pre-defined im-
provised scenarios. There are five sessions in the corpus with
two actors, one from each gender, in each session. The total
amount of data in this modest sized corpus amounts to roughly
12 hours. For speech emotion recognition, we only considered
the audio tracks labelled as one of the four categorical emotion
types, including Angry, Happy, Sad and Neutral as they are the
majority of the categorical emotion types, where the numbers of
utterances in each category are 1103, 595, 1084 and 1708, re-
spectively, with a sum of 4490. In the experiments, we followed
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a leave-one-speaker-out approach for cross validation. Specifi-
cally, we took four sessions as the training data, while in the re-
maining one session, one speaker is used for validation, model
selection and parameter tuning and the other for testing.

The low-level descriptors comprised of the 13-dimensional
MFCC including the zero-th order coefficient, the pitch and
their first order derivatives. Therefore, each frame had a dimen-
sionality of 28. The baseline in our work was a uniform atten-
tion mechanism based BLSTM. It had two LSTM layers (128
forward and 128 backward). The size of the hidden layer was
chosen by cross validation. The context vector c then passed
through a softmax layer to give the emotion state distribution.

Next, we substituted the attention mechanism defined in
Eq. (8, 9) for the averaging part in the baseline. In our pro-
posed model, the BLSTM and the attention mechanism were
the largest two components but they did not need to be coupled
together. To mitigate over-fitting, we took a greedy approach by
training these two components separately. A greedy layer-wise
training technique could avoid co-adaptation, a phenomenon
which tends to cause over-fitting during the training phase. This
approach is similar to the method proposed by Hinton et al. in
[16] for training deep models except for the fact that our model
was a discriminative one. In addition to the greediness, we also
applied dropout to the scaled hidden vectors (αtht in Fig. 2b)
before the summation. Dropout [17] is known to be an effec-
tive tool to regularize training and consequently to reduce the
chance of over-fitting. A final model further added a hidden
layer to the decoder. All model architectures and parameters
were selected based on optimizing the un-weighted accuracy of
the validation set. To begin with, we extracted the hidden vec-
tors ht from the baseline model, and then introduced the modi-
fications step by step. The final model consisted of an encoder
BLSTM with a cell size of 256, a dropout with a probability of
0.5 and a hidden layer of size 128 in the decoder.

Table 1: The performance of the proposed algorithms in com-
parison to the baseline model. In each row, the top number is
based on Eq. (8), and the bottom one is based on Eq. (9). UA
stans for the un-weighted accuracy and WA for the weighted
accuracy.

UA (%) WA (%)

Baseline 48.54 57.87

Baseline + Att. 48.13 55.88
48.70 56.38

Greedy + Att. 48.71 56.41
49.30 57.33

Greedy + Dropout + Att. 48.82 56.18
49.21 57.36

Greedy + Dropout + Att. + MLP 49.58 57.26
49.96 59.33

We observed that an implementation of the BLSTM cou-
pled with the attention mechanism resulted in an over-fitted
model. In Baseline+Att., only the model based on Eq. (9)
slightly improved upon Baseline in terms of the un-weighted
accuracy (48.70%). With additional techniques to prevent over-
fitting one at a time, Greedy+Att. and Greedy+Dropout+Att.
gradually outperformed Baseline in terms of UA. At last, the fi-
nal model gained an improvement by a definite margin in both
measures. The results are summarized in Table 1.

Not only did the attention mechanism help in the task of
emotion recognition, it also provided useful insights into the
sub-utterance structure. Fig. 3 gives an example plot of the at-
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Figure 3: The attention weights and the frame energy curve of
an utterance. In the left panel, the frame energy is based on
the raw PCM signals, while in the right panel it is based on the
hidden vectors ht.
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Figure 4: The histograms of correlations between the attention
weights and the frame energy curve. The left panel is based on
the raw PCM signals, while in the right panel it is based on the
hidden vectors ht.

tention weights and the frame energy curves based on xt and
ht, respectively. Note first that the attention mechanism fol-
lowed the energy curve of the hidden vectors ht instead of the
raw PCM signals. Also, from the right panel in Fig. 4, the
average of the correlations over all utterances is rather small.

5. Discussion
Based on the improved performance, it is clear that the attention
mechanism indeed provides an informative selection of frames.
The result also shows that the selection distribution need not
to be correlated to the frame energy curve. However, the im-
provement margin is not very significant. On this aspect, we
conjecture there are two factors. On the one hand, the greedy
approach might lead to a sub-optimal region that the attention
mechanism has little to contribute. On the other hand, even
though the attention mechanism offers an active selection dis-
tribution, there is a room for further improvement. Currently,
the combination of frames is through a weighted sum, which is
linear. A non-linear combination of the attention weights and
the frame hidden vectors would be an interesting direction for
future study.

6. Conclusion
In this work, we investigated the application of attention mecha-
nism based BLSTM model to the task of speech emotion recog-
nition. Despite the limited amount of data to fit such a big
model, we adopted an greedy approach to minimize the effect of
over-fitting. The preliminary experimental results show that the
attention mechanism based system outperforms an system with-
out the attention mechanism. Further, we also found out that the
attention selection distribution is not just correlated to the frame
energy curve, underscoring more complex speech property evo-
lution related to emotion.
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