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Abstract
Anomaly detection techniques were shown to help in detecting
word-level annotation errors in read-speech corpora for text-
to-speech synthesis. In this framework, correctly annotated
words are considered as normal examples on which the detec-
tion methods are trained. Misannotated words are then taken
as anomalous examples which do not conform to normal pat-
terns of the trained detection models. In this paper we propose
a concept of a voting detector—a combination of anomaly de-
tectors in which each “single” detector “votes” on whether a
testing word is annotated correctly or not. The final decision is
then made by aggregating the votes. Our experiments show that
voting detector has a potential to overcome each of the single
anomaly detectors.
Index Terms: annotation error detection, anomaly detection,
voting detector, read speech corpora, speech synthesis

1. Introduction
Word-level annotation of speech data is still one of the most
important processes for many speech-processing tasks. Con-
cretely, concatenative speech synthesis methods including pop-
ular unit selection assume the word-level (textual) annotation
to be correct, i.e. that textual annotation literally matches the
corresponding speech signal. Such an assumption could hardly
be guaranteed for corpus-based speech synthesis in which large
speech corpora are typically exploited. Manual annotation of
the corpora is time-consuming and costly, but, given the large
amount of data, still not errorless process [1]. Automatic or
semi-automatic annotation approaches could be a solution but
they are still far from perfect, see, e.g. [2–8]. Let us note that
any mismatch between speech data and its annotation may in-
herently result in audible glitches in synthetic speech [9].

As shown in our previous work [10], word-level annotation
errors in read-speech corpora for text-to-speech (TTS) synthesis
could be detected automatically using anomaly detection tech-
niques. In this framework, the problem of the automatic de-
tection of misannotated words could be viewed as a problem
of anomaly detection (also called novelty detection, one-class
classification, or outlier detection), an unsupervised detection
technique under the assumption that the vast majority of the ex-
amples in the unlabeled data set are normal [11]. By just provid-
ing the normal training data, an algorithm creates a representa-
tional model of this data. If newly encountered data is too differ-
ent from this model, it is labeled as anomalous [12]. This could
be perceived as an advantage over a standard classification ap-
proach in which substantial number of both negative (normal)
and positive (anomalous) examples is needed [13]. Neverthe-
less, if some anomalous examples are given in the anomaly de-

tection framework, they can be used to tune the detector and
to evaluate its performance. In the annotation error detection
framework, misannotated words are considered as anomalous
examples, and correctly annotated words are taken as normal
examples.

In this paper we further elaborate the concept of anomaly-
based annotation errors detection by proposing a voting
detector—a combination of anomaly detectors in which each
“single” detector “votes” on whether a testing word is anno-
tated correctly or not. In Section 2 data used in our experiments
are presented. In Section 3 we review single anomaly detection
models. Experiments with the voting detector framework are
described in Section 4. The results are discussed in Section 5.
Conclusions are drawn in Section 6.

2. Experimental data
We used a Czech read-speech corpus of a single-speaker male
voice, recorded for the purposes of unit-selection speech syn-
thesis [14]. The voice talent was instructed to speak in a
“news-broadcasting style” and to avoid any spontaneous ex-
pressions. The full corpus consisted of 12242 utterances (ap-
prox. 18.5 hours of speech) segmented to phone-like units us-
ing HMM-based forced alignment (carried out by the HTK
toolkit [15]) with acoustic models trained on the speaker’s
data [16]. From this corpus we selected Nn = 1124 words,
which were annotated correctly (i.e. normal examples), and
Na = 273 words (213 of them being different), which con-
tained some annotation error (i.e. anomalous examples). The
decision whether the annotation was correct or not was made
by a human expert who analyzed the phonetic alignment.

Various word-level feature sets were proposed to describe
the annotated words [10]. The sets incorporated various acous-
tic, spectral, phonetic, positional, durational, and other features.
To emphasize anomalies in the feature values, histograms and
deviations from their expected values were also used. For each
anomaly detector described further in Section 3.1 an optimal
feature set was proposed. More details about the feature sets
can be found in [10].

3. Baseline anomaly detection system
In this section we review the anomaly detection models intro-
duced in [10] and in Section 3.1.2 we also propose another de-
tection model based on Grubbs’ outlier test.

For the purposes of anomaly detection framework, let us
denote x(1), . . . , x(Nn) the training set of normal (i.e. not
anomalous) examples where Nn is the number of normal train-
ing examples with each example x(i) ∈ RNf and Nf being the
number of features.

,
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3.1. Single anomaly detection models

3.1.1. Gaussian distribution based detectors

Gaussian distribution based detectors model normal examples
using Gaussian distribution. In univariate Gaussian distribution
(UGD), each feature xj (j = 1, . . . , Nf ) is modeled separately
with mean µj ∈ R and variance σ2

j ∈ R under the assumption
of feature independence, i.e. xj ∼ N (µj , σ

2
j ). The probabil-

ity of xj being generated by N (µj , σ
2
j ) can be then written as

p(xj ;µj , σ
2
j ).

Multivariate Gaussian distribution (MGD) is a generaliza-
tion of the univariate Gaussian distribution. In this case, p(x) is
modeled in one go using mean vector µ ∈ RNf and covariance
matrix Σ ∈ RNf×Nf , i.e. x ∼ NNf (µ,Σ).

The training of the UGD detector consists of fitting param-
eters µj , σ2

j using

µj =
1

Nn

Nn∑
i=1

x
(i)
j , σ2

j =
1

Nn

Nn∑
i=1

(x
(i)
j − µj)

2. (1)

Similarly, the training of the MGD detector could be written as

µ =
1

Nn

Nn∑
i=1

x(i), Σ =
1

Nn

Nn∑
i=1

(x(i)−µ)(x(i)−µ)ᵀ. (2)

Probability of a new example x (either normal or anoma-
lous) can be then computed as

p(x) =

Nf∏
j=1

p(xj ;µj , σ
2
j ) =

Nf∏
j=1

1√
2πσj

exp(− (xj − µj)2

2σ2
j

),

(3)
or, in the case of the MGD detector as

p(x) =
1√

(2π)Nf |Σ|
exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
.

(4)
If p(x) is very small, i.e. p(x) < ε, then the example x does not
conform to the normal examples distribution and can be denoted
as anomalous.

3.1.2. Grubbs’ test

Grubbs’ test is typically used to detect a single outlier (i.e.
anomalous example in our case) in a univariate data set x of
length N assumed to come from a normally distributed popula-
tion [17].

The Grubbs’ two-sided test statistic is defined as

G =

max
i=1,...,N

|xi − µ|

σ
(5)

with xi being i-th (one-dimensional) example, and µ and σ de-
noting sample mean and standard deviation, respectively.

The hypothesis of no outliers is rejected at significance level
α if

G >
N − 1√
N

√√√√ t2α/(2N),N−2

N − 2 + t2α/(2N),N−2

(6)

with t2α/(2N),N−2 denoting the upper critical value of the t-
distribution with N − 2 degrees of freedom and a significance
level of α/(2N).

For the purposes of anomaly detection we modified the un-
derlying Grubbs’ test in the following ways:

1. Since we have a training set x(1), . . . , x(Nn) of normal
(i.e. not outlying) examples, µ and σ were computed
as sample mean and standard deviation of this training
set, and the Grubbs’ statistic (5) was calculated for each
tested example x.

2. Having multidimensional examples x(i) ∈ RNf , the
Grubbs’ test (6) was carried out independently for each
feature xj (j = 1, . . . , Nf ), and the tested example x
was detected as outlier if at least n features were detected
as outlying.

3.1.3. One-class SVM

One-class SVM (OCSVM) algorithm maps input data into a
high dimensional feature space via a kernel function and iter-
atively finds the maximal margin hyperplane which best sepa-
rates the training data from the origin. This results in a binary
decision function f(x) which returns +1 in a “small” region
capturing the (normal) training examples and−1 elsewhere (see
Equation 10) [18].

The hyperplane parameters w and ρ are determined by
solving a quadratic programming problem

min
w,ξ,ρ

1

2
||w||2 +

1

νNn

Nn∑
i=1

ξi − ρ (7)

subject to

w ·Φ(x(i)) ≥ ρ− ξi, i = 1, 2, . . . , Nn, ξi ≥ 0, (8)

where Φ(x(i)) is the mapping defining the kernel function, ξi
are slack variables, and ν ∈ (0, 1] is an a priori fixed constant
which represents an upper bound on the fraction of examples
that may be anomalous. We used a Gaussian radial basis func-
tion kernel

K(x,x′) = exp(γ||x− x′||2) (9)

where γ is a kernel parameter and ||x − x′|| is a dissimilarity
measure between the examples x and x′.

Solving the minimization problem (7) using Lagrange mul-
tipliers αi and using the kernel function (9) for the dot-product
calculations, the decision function for a new example x then
becomes

f(x) = sgn(w ·Φ(x)− ρ) = sgn(

Nn∑
i=1

αiK(x(i),x)− ρ).

(10)

3.2. Detection model training and selection

For the purposes of anomaly detection model training and selec-
tion, the normal examples were divided into training and vali-
dation examples using 10-fold cross validation with 60% of the
normal examples used for training and 20% of the normal ex-
amples used for validation in each cross-validation fold. The re-
maining 20% of the normal examples were used as test data for
the final evaluation of the model. As for the anomalous exam-
ples, 50% of them were used in cross validation when selecting
the best model parameters, and the remaining 50% of anoma-
lous examples were used for the final evaluation described in
Section 5.

A standard training procedure was utilized to train the mod-
els described in previous sections. Models’ parameters were
optimized during model selection, i.e. by selecting their values
that yielded best results (in terms of F1 score, see Equation 11)
applying a grid search over relevant values of the parameters
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Table 1: Optimal single-detector parameter values found dur-
ing independent training and optimization of each single detec-
tor.

OCSVM UGD MGD GT

ν∗ = 0.005 ε∗ = 0.005 ε∗ = 2.5e-14 n∗ = 1
γ∗ = 0.03125 α∗ = 0.0375

and various feature set combinations with 10-fold cross valida-
tion [10]. The optimal parameter values are shown in Table 1.
Scikit-learn toolkit [19] was employed in our experiments.

Comparison of the described single anomaly detector mod-
els on validation and test data sets is shown in Figure 2 and
discussed in Section 5.

4. Voting detector
The idea behind a combination of various “single” detection
models is to find out whether a combination of such detectors
can yield better results when compared to each single detector.
In this paper, so-called voting detector was investigated. In this
type of a detector the individual single detectors independently
“vote” on whether a testing example is anomalous or normal.
The final decision is then made by aggregating the votes. Typ-
ically, if a majority of detectors agrees on an example to be
anomalous, such an example is then detected as anomalous. In
other cases, the example is detected as normal.

We proposed two types of parameters of a voting detector
model which affect the voting process—voting threshold v, the
minimum number of single detectors which have to detect an
input example as anomalous in order to be really considered as
anomalous, and weights w of each single detector.

4.1. Training strategies

Two training strategies were proposed to train a voting detec-
tor and to optimize its parameters. In independent training (IT)
strategy, single detectors were trained and optimized indepen-
dently (as described in Section 3.1 and illustrated in Figure 1a)
prior to the voting detector optimization. The pre-trained sin-
gle detectors (with optimal model parameters shown in Table 1)
were then used to optimize voting detector’s parameters by vot-
ing on whether each validation example was anomalous or not
and by evaluating the results within the same 10-fold cross val-
idation scheme as used to train the single detectors.

Employing simultaneous training (ST) strategy, the indi-
vidual single detectors were trained and optimized simultane-
ously, together with the voting detector, within a single grid
search over all relevant parameters of each single detector and
the voting detector. The same 10-fold cross validation scheme
described above was utilized. The ST strategy is illustrated in
Figure 1b. For computational reasons, only n-best configura-
tions of each single detector were examined in the grid search
(with n being the number of configurations for which F1 ≥ p96
where p96 is a 96th percentile of F1 scores from all configura-
tions). The optimal single-detector parameters found using this
training strategy are shown in Table 2.

4.2. Baseline voting detector

In our first experiments with voting detector (VD0), we used
a simple majority rule (i.e., v = 3 in our case) to vote on
whether an example is anomalous. We also set equal weights
w = (1, 1, 1, 1) for single detectors during voting.

Figure 1: Simplified scheme of voting detector training strate-
gies: a) independent training (IT) and b) simultaneous training
(ST) of single detectors.

Table 2: Optimal single-detector parameters found during si-
multaneous training and optimization of voting detector VD2.

OCSVM UGD MGD GT

ν∗ = 0.01 ε∗ = 4.0e-6 ε∗ = 4.0e-15 n∗ = 1
γ∗ = 0.0625 α∗ = 0.0375

4.3. Advanced voting detector

In the advanced versions of the voting detector, we experi-
mented with various voting thresholds and also with various
weights of single detectors. In the VD1 experiment all possi-
ble values v = {1, 2, 3, 4} were examined, and the weights w
were set according to the ratio of detection accuracies of the
single detectors from Figure 2.

In the most complex experiment VD2 we further examined
different weights of each single detectors—the weights were
changed from 0 up to 3. The higher the weight, the more influ-
ence the corresponding single detector had during voting. The
zero weight means that the single detector was not used for vot-
ing at all. The optimal weights are shown in Table 3.

5. Results and discussion
Due to the unbalanced number of normal and anomalous ex-
amples, F1 score was used to evaluate the performance of the
proposed anomaly detection models

F1 =
2 ∗ P ∗R
P +R

, P =
tp
pp
, R =

tp
ap

(11)
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Table 3: Optimal voting detector parameter values found by
cross validation for IT and ST strategies. The weights are spec-
ified in the following order w = (OCSVM, UGD, MGD, GT).

Voting detector Training strategy v∗ w∗

VD2 IT 3 (1, 0, 3, 0)
VD2 ST 3 (1, 0, 3, 1)

where P is precision, the ability of a detector not to detect
as misannotated a word that is annotated correctly, R is re-
call, the ability of a detector to detect all misannotated words,
tp means “true positives” (i.e., the number of words correctly
detected as misannotated), pp stands for “predicted positives”
(i.e., the number of all words detected as misannotated), and ap
means “actual positives” (i.e., the number of actual misanno-
tated words). F1 score was also used to optimize parameters
during the model selection process described in Section 3.2.

McNemar’s test [10, 20] was employed to interpret statisti-
cal significance of the obtained results.

The results in Figure 2 show that voting detector outper-
forms each of the single detectors both on validation and test
sets. In the case of ST strategy, both VD1 and VD2 are signif-
icantly better than OCSVM and UGD on the test set (McNe-
mar’s test, α = 0.05). For IT strategy, VD2 is significantly bet-
ter than OCSVM on the test set. The differences among other
detection models were not found to be statistically significant
(McNemar’s test, α = 0.05).

As for training strategies, simultaneous training (ST) strat-
egy seems to outperform independent training (IT) strategy on
the test set (not statistically significant). On the other hand, IT
strategy gives better results on the validation set. This para-
dox may be caused by the fact that the same validation set is
used twice during training—once to train and optimize single
detectors and then to optimize a voting detector. In the case of
ST strategy, training and optimization are performed in one go
through the validation set.

As for the parameters of the voting detector, a simple ma-
jority rule (v = 3) was found to be the best. It also appears that
it is useful to search for optimal weights of the individual single
detectors. Setting the weights according to the ratio of detection
accuracies of single detectors (VD1 vs. VD0) or searching for
more specific weights (VD2 vs. VD0) seem to outperform equal
weights. As can be seen in Table 3 (VD2 experiment), voting
detector prefers MGD based detector over the others, and it does
not use UGD based detector at all.

6. Conclusions
In this paper we further elaborated the concept of anomaly-
based annotation errors detection by proposing a voting
detector—a combination of anomaly detectors in which each
single detector votes on whether a testing word is annotated
correctly or not. The final decision is then made by aggregating
the votes. Gaussian distribution based models, one-class sup-
port vector machines, and Grubbs’ test based model were used
as the single anomaly detectors. Our experiments showed that
voting detector has a potential to overcome each of the single
anomaly detectors.

In our future work we plan to employ other anomaly detec-
tors, preferably those working on a different principle than the
detectors described in this paper (e.g. contextual, conditional or
collective anomaly detectors [21, 22]), to see whether a combi-

Test	data	set

Valida�on	data	set

VD0 VD1 VD2 OCSVM UGD MGD GT

IT 89.99 90.81 91.16 88.31 87.39 88.50 87.58

ST 89.06 89.18 89.35

85.0

86.0

87.0

88.0

89.0

90.0

91.0

92.0

F1
	[%

]

VD0 VD1 VD2 OCSVM UGD MGD GT

IT 88.73 88.39 88.81 86.64 87.23 88.89 88.17

ST 89.05 89.30 89.30

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

F1
	[%

]

Figure 2: Comparison of single anomaly detectors and voting
detectors trained using IT and ST strategies on validation (top)
and test (bottom) data sets in terms of F1 and 95% confidence
intervals (where applicable).

nation of such detectors could further improve the performance
of a voting detector. Using the proposed anomaly detection, we
believe the annotation process accompanying the development
of a new TTS voice could be reduced only to the correction
of words detected as misannotated. Lessons learned from the
anomaly detection might also be used for the automatic error
detection in synthetic speech [23–25].
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[16] J. Matoušek and J. Romportl, “Automatic pitch-synchronous
phonetic segmentation,” in INTERSPEECH, Brisbane, Australia,
2008, pp. 1626–1629.

[17] F. E. Grubbs, “Procedures for detecting outlying observations in
samples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[18] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471,
2001.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. M. B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perror,
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