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Abstract
This paper proposes a discriminative layered nonnegative ma-
trix factorization (DL-NMF) for monaural speech separation.
The standard NMF conducts the parts-based representation us-
ing a single-layer of bases which was recently upgraded to the
layered NMF (L-NMF) where a tree of bases was estimated for
multi-level or multi-aspect decomposition of a complex mixed
signal. In this study, we develop the DL-NMF by extending the
generative bases in L-NMF to the discriminative bases which
are estimated according to a discriminative criterion. The dis-
criminative criterion is conducted by optimizing the recovery
of the mixed spectra from the separated spectra and minimizing
the reconstruction errors between separated spectra and original
source spectra. The experiments on single-channel speech sep-
aration show the superiority of DL-NMF to NMF and L-NMF
in terms of the SDR, SIR and SAR measures.

Index Terms: dictionary learning, discriminative learning, non-
negative matrix factorization, speech separation

1. Introduction
Nonnegative matrix factorization (NMF) is known a popular ap-
proach to data representation which decomposes a given non-
negative matrix X into a nonnegative dictionary (or basis) ma-
trix W and a nonnegative weight matrix H via X ≈ WH.
Inspired from the visual perception, NMF attempts to learn the
hidden representation of the part information of the objects [1].
It has been successfully developed in many research fields, such
as image processing [2], blind source separation [3], document
clustering [4], and computational biology [5].

Over the past years, various extensions of NMF have been
proposed. For instance, the sparse NMF was proposed to learn
the sparse representation of data for solving the overcomplete
problem [6]. The graph regularized NMF was proposed by tak-
ing the intrinsic geometric structure of data into consideration
[7]. For audio signals, NMF can be directly applied for the
Fourier magnitude spectrogram or its variants (e.g., the mel-
spectrogram). For supervised speech separation, the convolu-
tive NMF (CNMF) [8] was proposed to discover the phoneme-
like bases by considering the temporal dependencies of the
magnitude spectrogram across several consecutive frames. The
two-dimensional CNMF was also proposed to identify musi-
cal notes by further decoding the spectral dependencies (e.g.,
the harmonic structure) of the magnitude spectrogram for blind
music separation [9].

However, the standard NMF model and the extensions men-
tioned above do not generate hierarchical features. In recent
years, various deep NMF algorithms were proposed by incorpo-
rating the hierarchical architecture into the standard NMF. For

instance, the multi-layer NMF was proposed as a sequential fac-
torization for different NMF variants [10]. However, its recon-
struction error increases with the increasing number of layers
due to the lack of error correction procedure through the layers.
In [11], the deep semi-NMF with error correction was proposed
to learn a hierarchical representation of features from an image
dataset for attribute-based clustering. But, this method did not
impose the nonnegative constraint so that the additive combi-
nation of bases was not possible for speech separation applica-
tions. Extended from [12], the iterative inference procedure of
the standard NMF was unfolded to mimic the architecture of a
deep neural network. The architecture can be thought of as per-
forming a joint optimization on the generative-discriminative
hybrid model [13]. However, the underlying structure is still
single-layer. In our previous work [14], a layered nonnegative
matrix factorization (L-NMF) algorithm was proposed to learn
the hierarchical bases for speech separation. Deep neural net-
works (DNNs) have emerged as a powerful machine learning
approach and produced state-of-the-art results in many research
fields such as speech recognition [15], speech enhancement [16]
and source separation [17]. DNNs, as deep discriminative mod-
els, hold the promise of the performance if given a large amount
of labelled data. But sometimes it is not trivial to get a large
amount of labelled data.

The NMF and most of its variants all tend to learn hidden
bases, which link explicitly or implicitly the original data to
the corresponding representations, of a given dataset. These
models behave like generative models. For supervised speech
separation problem, NMF-based methods are first applied to
learn the nonnegative bases for each individual speaker. Af-
ter learning, the speaker-dependent bases are used to separate
the mixed spectrogram. However, the bases of each speaker are
learned without considering the interfering effect from the other
speakers during training. Therefore, a mismatch exists between
training and test conditions such that the separation result is not
truly optimized. To address this problem, the discriminative
NMF (D-NMF) methods were proposed to directly optimize the
separation objective, having an accurate reconstruction of the
mixture using the separated spectra while keeping the separated
spectra as close to the original spectra as possible [12][18]. In
the same spirit of NMF to D-NMF, we propose a discriminative
L-NMF (DL-NMF) algorithm for single-channel speech sepa-
ration. After learning the hierarchical bases for each speaker in-
dependently by L-NMF, we introduce a discriminative criterion
on a small subset of data, which adapt the bases by enforcing an
optimal recovery of the mixed spectra from separated spectra
and minimizing the total distance between the separated spectra
and the original spectra so as to further improve the separation
performance.
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Figure 1: Layered NMF model.

The rest of the paper is organized as follows. Section II
gives a brief review of the standard NMF and our previous work,
L-NMF. In section III, we propose the DL-NMF and show its
update equations. Section IV demonstrates the experimental re-
sult. We end in section V with some conclusions and future
work.

2. NMF and Layered NMF
2.1. NMF

Given a nonnegative data matrix X ∈ RM×N
+ , NMF aims to

decompose this data matrix into a product of two nonnegative
matrices W ∈ RM×K

+ and H ∈ RK×N
+ with their entries

related as

Xmn ≈ [WH]mn =
∑
k

WmkHkn (1)

The NMF decomposition is optimized by minimizing the recon-
struction error between the observed data X and its reconstruc-
tion WH as follows

min
W,H≥0

D (X ‖WH) (2)

where D is the defined cost function, which can be the Eu-
clidean distance, Kullback-Leibler divergence, Itakura-Saito di-
vergence, and so on. This model could be solved by performing
the alternating minimization. Multiplicative update rules are
simple and efficient in inferring the model parameters {W,H}
as follows

W←W ⊗ [∇WD]−
[∇WD]+ (3)

H← H⊗ [∇HD]−
[∇HD]+ (4)

where ⊗ denotes an element-wise multiplication and the divi-
sion is also element-wise. [∇WD]+ and [∇WD]− indicate the
positive and negative parts of the gradient with respect to W,
respectively. Similarly, [∇HD]+ and [∇HD]− are the positive
and negative parts of the gradient with respect to H, respec-
tively.

2.2. Layered NMF

In [14], the layered NMF with L layers is performed by

X ≈ X̂ =

(
L∏

l=1

W(l)

)
H(L). (5)

This approximation is performed based on a hierarchical ar-
chitecture with L layers as shown in Fig. 1. In training
procedure, the factors {W(l)} and H(L) are initialized layer
by layer. In the first step, the standard (single-layer) NMF
is performed to factorize X ≈ W(1)H(1), where W(1) ∈
RM×K1

+ and H(1) ∈ RK1×N
+ . Then the same factoriza-

tion is performed on the result obtained from the first step as
H(1) ≈ W(2)H(2), where W(2) ∈ RK1×K2

+ and H(2) ∈
RK2×N

+ . We continue the procedure to pre-train all layers un-

til H(L−1) ≈ W(L)H(L), where W(L) ∈ RKL−1×KL
+ and

H(L) ∈ RKL×N
+ . After the initialization, we fine-tune the pa-

rameters of all layers, {W(l)} and H(L), to reduce the total
reconstruction error via

min
{W(l)},H(L)≥0

D
(
X

∥∥∥∥
(

L∏
l=1

W(l)

)
H(L)

)
, ∀ l = 1, · · · , L.

(6)
The multiplicative update rules for all layers can be derived as

W(l) ←W(l) ⊗ [∇W(l)D]−
[∇W(l)D]+ , ∀ l = 1, · · · , L (7)

H(L) ← H(L) ⊗ [∇H(L)D]−
[∇H(L)D]+ (8)

where [∇W(l)D]+ and [∇W(l)D]− denote the positive and

negative parts of the gradient with respect to each layer W(l)

and [∇H(L)D]+ and [∇H(L)D]− denote the positive and neg-

ative parts of the gradient with respect to H(L), respectively.
As indicated in [14], comparing with the standard NMF, the L-
NMF can realize more complex bases via the hierarchical struc-
ture by combining sparse parts-based bases extracted by the sin-
gle layer NMF to interpret the data differently, hence to improve
separation performance.

3. Discriminative Layered NMF
Both NMF and L-NMF are seen as the generative models,
and each of which provides a way to represent the given data.
However, a good general representation does not guarantee
the satisfied performance in a specific application. There-
fore, we incorporate a discriminative cost function into the L-
NMF. Here, we consider the task of supervised speech separa-
tion between two speakers. In this task, first, the hierarchical

bases of each individual speaker (W
(1)
s1 ,W

(2)
s1 , · · · ,W(L)

s1 and

W
(1)
s2 ,W

(2)
s2 , · · · ,W(L)

s2 ) are separately learned from his/her
clean sentences using the L-NMF algorithm. Then, using the

input mixed spectrograms Xmix, the parameters H
(L)
s1 and

H
(L)
s2 are obtained by minimizing the following cost function

with the fixed basis parameters (W
(1)
s1 ,W

(2)
s1 , · · · ,W(L)

s1 and

W
(1)
s2 ,W

(2)
s2 , · · · ,W(L)

s2 ) as

min
{H(L)

s1
,H

(L)
s2
}≥0

D
(
Xmix

∥∥∥∥(I, I)
(

W
(1)
s1 0

0 W
(1)
s2

)
(

W
(2)
s1 0

0 W
(2)
s2

)
· · ·
(

W
(L)
s1 0

0 W
(L)
s2

)(
H

(L)
s1

H
(L)
s2

))

(9)
where I and 0 are identity and zero matrices with proper sizes,
respectively. For ease of expression, we can rewrite this cost
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function by using the compound matrices for each individual
matrices in Eq. (9) in a form of

min
H(L)≥0

D
(
Xmix

∥∥∥∥I
(

L∏
l=1

W
(l)

)
H

(L)

)
. (10)

In this paper, the Kullback-Leibler divergence is selected as the
cost function in all steps. Therefore, similar to Eq. (8) with ad-
ditional consideration of matrix I, the update equation of H(L)

can be obtained as

H
(L) ← H

(L) ⊗
(
I

(∏L
l=1 W

(l)
))T (

Xmix

X̂mix

)
(
I

(∏L
l=1 W

(l)
))T

1
(11)

where X̂mix is the reconstructed mixed spectra and 1 is a ma-
trix of the proper size with all elements equal to one. This step is
actually the same as the separation stage in L-NMF [14]. How-
ever, we introduce a discriminative cost function to further adapt
the learned hierarchical bases and make them more discrimina-
tive between speakers. With the fixed weight matrices (H

(L)
s1

and H
(L)
s2 , which are learned from Eq. (11)), the discriminative

criterion modifies the hierarchical basis matrices of two speak-

ers (W
(1)
s1 ,W

(2)
s1 , · · · ,W(L)

s1 and W
(1)
s2 ,W

(2)
s2 , · · · ,W(L)

s2 ) by
minimizing the total errors between the reconstructed spectra
and the original spectra by

min
{W(l)

s1
,W

(l)
s2
}≥0

D
((

S1

S2

)∥∥∥∥
(

W
(1)
s1 0

0 W
(1)
s2

)
(

W
(2)
s1 0

0 W
(2)
s2

)
· · ·
(

W
(L)
s1 0

0 W
(L)
s2

)(
H

(L)
s1

H
(L)
s2

))
,

∀ l = 1, · · · , L
(12)

where S1 and S2 are the original spectra, i.e., the target of the
separated spectra of two speakers. Again, we rewrite this cost
function by using compound matrices as

min
{W(l)}≥0

D
(
S

∥∥∥∥
(

L∏
l=1

W
(l)

)
H

(L)

)
, ∀ l = 1, · · · , L. (13)

Similar to Eq. (7), the update equations for the bases of two
speakers in different layers can be obtained by

W
(1) ←W

(1)⊗
(

S

Ŝ

)((∏L
m=2 W

(m)
)
H

(L)
)T

1
((∏L

m=2 W
(m)
)
H(L)

)T (14)

W
(l) ←W

(l) ⊗(∏l−1
m=1 W

(m)
)T (

S

Ŝ

)((∏L
m=l+1 W

(m)
)
H

(L)
)T

(∏l−1
m=1 W

(m)
)T

1
((∏L

m=l+1 W
(m)
)
H(L)

)T ,

∀ l = 2, · · · , L− 1

(15)

W
(L) ←W

(L)⊗
(∏L−1

m=1 W
(m)
)T (

S

Ŝ

)(
H

(L)
)T

(∏L−1
m=1 W

(m)
)T

1 (H(L))
T

(16)

where S = [S1;S2] and Ŝ = [Ŝ1; Ŝ2] represent the original and
the reconstructed spectra, respectively. In summary, the model

Figure 2: Discriminative Layered NMF model.

structure of DL-NMF is shown in Fig. 2 and the bases of DL-
NMF are optimally trained by

{Ŵ(l)} = argmin
{W(l)}≥0

D
(
S

∥∥∥∥
(

L∏
l=1

W
(l)

)
Ĥ

(L)

)
,

∀ l = 1, · · · , L
(17)

where

Ĥ
(L) = argmin

H(L)≥0

D
(
Xmix

∥∥∥∥I
(

L∏
l=1

W
(l)

)
H

(L)

)
. (18)

In practice, the procedure of updating Ĥ
(L) and {Ŵ(l)} would

be repeated several times.

4. Experiments and Results
In this paper, we followed the experimental procedure of the
L-NMF in [14] and demonstrate the benefit of the discrimina-
tive learning in a supervised speaker-dependent speech separa-
tion task. The speech mixtures were generated by combining
sentences from one female (FA) and one male (MC) speakers
from TSP corpus [19] to evaluation the proposed DL-NMF al-
gorithm. There are 60 sentences spoken by each of the speak-
ers. The TSP corpus contains over 1400 sentences spoken by 25
speaker. The 1024-point short-term Fourier transform (STFT)
with a 64-ms frame length and a 16-ms frame shift was calcu-
lated to obtain the Fourier magnitude spectrogram. First, the hi-
erarchical bases of each speaker were learned from clean train-
ing data using L-NMF. Then, the discriminative criterion was
used to adapt the layered basis matrices. After the adaptation,
for the spectrogram of a new test mixture, the weight matrices

Ĥ
(L) = [Ĥ

(L)
s1 ; Ĥ

(L)
s2 ] were obtained using Eq. (11) and the

separated spectrograms were then calculated by applying the
Wiener gain as follows

X̂s1 = Xmix ⊗
(∏L

l=1 Ŵ
(l)
s1

)
Ĥ

(L)
s1(∏L

l=1 Ŵ
(l)
)
Ĥ(L)

(19)

X̂s2 = Xmix ⊗
(∏L

l=1 Ŵ
(l)
s2

)
Ĥ

(L)
s2(∏L

l=1 Ŵ
(l)
)
Ĥ(L)

. (20)
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Table 1: Separation performance of NMF, L-NMF, and DL-NMF in terms of SDR, SIR and SAR measures (dB).

Methods
Numbers
of bases

Female (FA) Male (MC)
SDR SIR SAR SDR SIR SAR

NMF
K=10 6.76 10.34 9.94 6.28 8.92 10.51
K=20 6.83 10.05 10.27 6.34 8.82 10.81
K=30 6.71 9.88 10.15 6.10 8.30 10.94

L-NMF
K1=180, K2=10 7.26 11.09 10.14 6.75 9.46 10.78
K1=180, K2=20 7.38 10.94 10.43 6.70 9.16 11.21
K1=180, K2=30 6.88 10.17 10.19 6.26 8.48 11.04

DL-NMF
K1=180, K2=10 7.42 11.11 10.36 6.87 9.36 11.19
K1=180, K2=20 7.87 11.33 11.04 7.48 10.30 11.38
K1=180, K2=30 7.65 10.92 10.99 7.37 10.05 11.33

In the implementation, we randomly selected 70% of each
speaker’s sentences (42 sentences) for training his/her hierarchi-
cal bases. Then, we used another 20% (12 mixtures and their
corresponding clean utterances) for the discriminative learning
of DL-NMF. The remaining 10% (6 test mixtures) were used
for testing. We repeated the experiments 15 times using differ-
ent random selections. Totally, 90 test mixtures were created
from the FA-MC speaker pair. For both L-NMF and DL-NMF,
the layer-related parameters were set as L = 2, K1 = 180
and K2 = [10, 20, 30]. The performance of the proposed al-
gorithms was assessed in terms of the source-to-distortion ra-
tio (SDR), the source-to-interference ratio (SIR) and source-to-
artifacts ratio (SAR) [20]. The separation results of the standard
NMF, the L-NMF and the proposed DL-NMF are shown in Ta-
ble 1. The result in Table 1 shows the average SDR, SIR and
SAR over 90 test mixtures. Clearly, L-NMF outperforms the
standard NMF in both SDR and SIR measures while the pro-
posed DL-NMF improves the SDR, SIR and SAR further by
incorporating the discriminative cost function.

5. Conclusions
In our previous work, we demonstrated that L-NMF algorithm
can realize more complex bases by combining sparse parts-
based bases extracted by the single-layer standard NMF and
interpret data differently. We also showed that L-NMF out-
performs the standard NMF in terms of the SDR measure in
speech separation experiments. However, the NMF and L-
NMF are both generative models. These generative methods
do not directly optimize the performance for specific applica-
tions. In contrast, the discriminative learning is able to boost
performance when dealing with the supervised learning prob-
lem. Accordingly, we proposed the DL-NMF, based on the
L-NMF method, by incorporating the discriminative dictionary
learning technique to learn discriminative hierarchical bases for
the application of speech separation. Simulation results show
that the proposed DL-NMF outperforms the standard NMF and
L-NMF in terms of SDR, SIR and SAR measures in the speech
separation tasks.

In this study, we set the numbers of layer in DL-NMF and
L-NMF as L = 2 because the variety in one-frame spectrum is
not too much in speech samples from TSP corpus such that the
performance is not significantly different by increasing L. One
way to increase the variety of the training spectrum is to con-
sider temporal variations by extracting multiple-frame spectra.
In this case, the observation at time t contains several consecu-
tive one-frame spectra, which is unfolded into a column vector
[12]. In other words, we can apply our method to analyze spec-

tral patches of the spectrograms for speech separation. Another
future work is to incorporate sparsity constraints into the pro-
posed method. The sparsity constraints have been shown to help
the SIR score but decrease the SAR score [21]. Therefore, the
degree of sparseness should be carefully designed based on the
requirements of the application. Furthermore, all size param-
eters of the hierarchical architecture of the proposed DL-NMF
algorithm are pre-determined in advance currently. In the fu-
ture, we will extend our method to a Bayesian approach [22],
which can regularize the model and automatically select model
parameters by given data. In addition, exploring benefits from
using a nonlinear function between layers would be also pur-
sued.
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