
On Smoothing and Enhancing Dynamics of Pitch Contours Represented by 
Discrete Orthogonal Polynomials for Prosody Generation 

Chen-Yu CHIANG 

Dept. of Communication Engineering, National Taipei University, New Taipei City, Taiwan 
cychiang@mail.ntpu.edu.tw 

 

Abstract 
This paper presents a new pitch contour generation algorithm 
for statistical syllable-based logF0 generation models which 
represent logF0 contours of syllables by coefficients of 
discrete orthogonal polynomials, i.e. orthogonal expansion 
coefficients (OECs). The conventional statistical logF0 models 
can generate smooth pitch contour within a syllable because of 
the continuity property of polynomials. However, the models 
do not ensure to produce continuous and smooth logF0 
contours in the proximity of syllable junctures. Besides, 
dynamic range of the generated logF0 contours is generally 
smaller than the one of real speech. The above two 
shortcomings would result in unnatural and monotonous 
prosody. To overcome these shortcomings, juncture-smooth 
and dynamics-enhancing OEC generation algorithms are 
hence proposed in this paper. Analysis on the generated logF0 
contours by the proposed algorithm shows some 
improvements in logF0 smoothness at syllable junctures and 
enhanced logF0 dynamic range. In addition, a perceptual 
evaluation of the logF0 contour generated by the proposed 
algorithm shows an improvement in naturalness of the 
synthesized speech. 
Index Terms: prosody, pitch contour, orthogonal expansion 
polynomial, text-to-speech system 

1. Introduction 
Discrete orthogonal polynomials are widely used to represent 
syllabic pitch contours of Mandarin [1-6] and Chinese dialects 
[7]. In Chen and Wang’s study of vector quantization of pitch 
information for Mandarin [1], the pitch contour of each 
syllable is parameterized by a 3-rd order discrete orthogonal 
polynomial expansion expressed by 
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where ( )a j  is called the orthogonal expansion coefficient 
(OEC) for j-th orthogonal polynomial basis, ( / )j i M ; ˆ ( )F i  
represents a reconstructed pitch value of i-th voicing frame; 
M+1 is the length of the syllable pitch contour. The bases are 
normalized to [0,1] in length and are expressed by: 

0
1/2

1
3

1/2 2
2

5
1/2

3

2
3 2

2 2

( / ) 1
( / ) [12 /( 2)] [ / 0.5]

180 1( / ) [ ] [( ) ]( 1)( 2)( 3) 6
2800( / ) [ ]( 1)( 2)( 2)( 3)( 4)

( 1)( 2)3 6 3 2  [( ) ( ) ( ) ]2 10 20

i M
i M M M i M

M i i Mi M M M M M M M
Mi M M M M M M

M Mi i M M i
M M MM M

    (2) 

These bases are chosen since they can represent basic patterns 
of logF0 contours for Chinese tones. Their corresponding 

coefficients, i.e. OECs, can be found by  
1
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where F(i) is the observed i-th voicing frame of a syllable. 
Therefore, the pitch contour of n-th syllable in an utterance, 

nsp , can be represented by a four-dimensional vector: 
 (0) (1) (2) (3) T

n n n n na a a asp                    (4) 
where an(0), an(1), an(2), and an(3) represent respectively the 
mean, slope, acceleration and curvature of the logF0 contour. 
Generally, the error between the observed pitch contour, ( )F i , 
and the reconstructed one, ˆ ( )F i , is very small. Therefore, the 
OECs of syllables can be directly taken as prediction targets in 
prosody generation tasks [1-7]. In the previous studies [2,6], 
logF0 generation models were formulated based on a 
maximum likelihood (ML) criterion: 
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where *
nsp  is the ML-generated syllable logF0 contour; ( )β  is 

the mean vector of a Gaussian distribution with covariance 
matrix Vn, which is a function of the tone triplet,

1
1 1 1( , , )n

n n n nt t t t , the pitch prosodic state, pn, and the 
adjacent prosodic break types 1 1( , )n

n n nB B B . It is noted that 
( )β  can be obtained by superimposing several four-

dimensional vectors (i.e. OECs) which represent effects of 
tone, prosodic state, or prosodic break [5,6], i.e. 
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The pitch modeling by OECs is advantageous in several 
aspects. First, logF0 contours in different lengths can be 
parameterized by vectors with identical dimensions, i.e. four 
OECs, so as to facilitate a syllable-based pitch modeling. 
Second, the OECs can well describe a smooth pitch contour of 
a syllable since the fitting error between the observed logF0 
contour and the reconstructed one is negligibly small. Third, 
the logF0 contours can be easily manipulated for different 
lengths caused by different speaking rate (SR) [6] since the 
bases, ( / )j i M , are normalized to [0,1] and the length can be 
simply specified by the parameter M. 

However, the ML-based logF0 generation in Eq. (5) does 
not ensure to produce smooth consecutive logF0 contours on 
syllable junctures. By analyzing the logF0 generation results, 
this discontinuity usually takes place at junctures of a 
preceding voiced final and a following voiced initial and 
results in unnatural prosody. Besides, the ML-based generated 
OECs encounter an over-smoothing problem that the dynamic 
ranges of the ML-based generated OECs are generally 
narrower than the ones of the authentic OECs, resulting a 
monotonous prosody. It can be seen from a typical example of 
this discontinuity and the over-smoothing problem in Figure 1 
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that the original F0 contours are smoothly connected at some 
syllable junctures but the predicted F0 contours are not. The 
F0 dynamic range of the authentic speech is wider than the the 
synthesized one. Therefore, to tackle the above-mentioned two 
issues, this paper proposes a juncture-smooth OEC generation 
algorithm to ensure smoothness for pitch contours on voiced 
syllable junctures. Based on the proposed smooth OEC 
algorithm, a tonality-enhanced OEC algorithm and a 
dynamics-controlled OEC algorithm are hence developed to 
increase dynamic range of predicted OECs. 

 

 
Figure 1: Examples of F0 contours for authentic 
speech (upper) and the synthesized speech (lower) 

2. Juncture-Smooth OEC Generation 
The total log-likelihood function for ML-based logF0 
generation of an utterance is expressed by 
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where N represents number of syllable in an utterance; an is a 
4-by-1 vector composed of four OECs representing mean 
vector of the Gaussian distribution generated by a prosodic 
model given with some linguistic/prosodic context of n-th 
syllable; Vn is a 4-by-4 covariance matrix for the Gaussian; xn 
represents the predicted OEC vector for n-th syllable. To 
ensure smoothness of logF0 contours at voiced-continuous 
syllable junctures, the following two conditions are required: 
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where ˆ [1, 1]kn N  is a syllable index of k-th smooth 
juncture, i.e. the pitch contours of ˆ -thkn  and ˆ( 1)-thkn   
syllables are smoothly connected at the juncture between 
ˆ -thkn  and ˆ( +1)-thkn syllables (referred as ˆ -thkn  juncture); K 

is number of smooth junctures; ˆ ( )
knF i  is the OEC expanded 

logF0 value of i-th frame in ˆ -thkn  syllable obtained by 
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ˆ 1
knI  is the length of the voiced frame for ˆ -thkn  syllable; 

ˆ ( )
kn jx  represents j-th element of the OEC vector;  

ˆ ˆ( 1)
k kn nF I  and ˆ 1( 1)

knF  means respectively a right 
extrapolated logF0 values from ˆ -thkn  syllable and a left 
extrapolated logF0 value from ˆ( 1)-thkn  syllable. If one of 
the conditions ˆ ˆ ˆ 1( 1) (0)

k k kn n nF I F  or ˆ ˆ ˆ 1( ) ( 1)
k k kn n nF I F is 

satisfied, the logF0 contour at ˆ -thkn  juncture is continuous. 
Furthermore, if the two conditions are both satisfied, the logF0 
contour is smoothly connected at the juncture. 

The problem to generate juncture-smooth OECs can be 
found by the following objective function: 
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where f
k  and b

k  are the Lagrange multipliers respectively 
for right and left extrapolated logF0 constraints. Since the 
juncture-smooth constraints stated in Eqs. (8) and (10) are 

linear transformations of the predicted logF0, x, the objective 
function Eq. (10) can be re-written by a matrix form: 
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where 1 2 ... TT T T
Nx x x x  and 1 2 ...

TT T T
Na a a a ; 

R is a squared matrix formed by the inverse matrixes of the 
covariance matrixes, Vn; λ  is a vectorial Lagrange multiplier 
formed by f

k  and b
k ; Z is a linear transformation matrix 

formed by the smooth-juncture constraint in Eq. (8) in terms of 
the linear combinations of bases ( )j . Then, the optimal pitch 
OECs can be derived by ( , ) /O x λ x 0 , resulting in 

1* T Tx R Z λ a                                     (12) 
By knowing the juncture-smooth constraints made by Eq. (8), 
i.e. *Zx 0 , λ  is obtained by 
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3. Dynamics-Enhanced OEC Generation 
To increase the dynamic ranges of the generated OECs, a new 
objective function is defined by 
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where ( , )O x λ  is the objective function defined in Section 2; 
( )v j  is the variance of j-th dimension of the generated OEC 

vector for an utterance; wj is a weight for variance of j-th 
dimension. The significance of wj is to tune the dynamics of 
the OECs of j-th dimension. Generally, as wj is larger, the 
dynamic range of the generated OECs of j-th dimension is 
larger. The variance, ( )v j , is expressed by 
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We can rewrite Eq. (15) by a matrix equation: 
( )

TT T T T
j j j j jv j C x C x e C x e C x x D x        (16) 

where Cj is an 4N-by-4N squared matrix in which the element 
at r-th row and s-th column is defined by 

1 ,  if  and (  mod 4)( , )        0,  otherwise                                 j
N r s r jr sC ;          (17) 

e is a 4N-by-1 vector expressed by 
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T
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and ( )T T

j j jD C I ee C  is an 4N-by-4N symmetric matrix. 
The objective function in Eq. (14) can be re-written by  
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The optimal OECs, x*, given with the objective function  
( , )U x λ , can be derived by ( , ) /U x λ x 0  and the juncture-

smooth constraint *Zx 0 : 
1* 1 1 1T T Tx I H Z ZH Z Z H R a             (20) 

where H is a symmetric squared matrix expressed by  
3
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4. Tonality-Enhanced OEC Generation 
By an informal subjective test on the synthesized speeches by 
the dynamics-enhanced generation algorithm in Section 3, we 
found some tones of syllables would sound like different tones. 
These glitches may be resulted from disadvantages of the SR-
HPM in which logF0 contour of each syllable is assumed to be 
additively combined by several affecting patterns. The 
combined logF0s do not ensure to preserve the tone of each 
syllable since tonality of syllable is affected not only by 
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absolute value of logF0 but also by the relative logF0 value 
w.r.t. the ones of adjacent syllables, i.e. dynamic logF0 values. 
In Xu’s papers [8], several perceptual tests were conducted to 
show that the relative height and shape of pitch contour could 
affect perception of tone. We believe that incorporating the 
dynamic logF0 features in the logF0 generation model can 
improve and preserve tonality of the synthesized logF0. The 
idea is realized by introducing two dynamic logF0 features 
into the original logF0 log-likelihood function. The two 
dynamic logF0 features are the proceeding logF0 difference, 

nx , and the post logF0 difference, nx , defined respectively by 
    1 1,2  and ,1 1n n n n n nn N n Nx x x x x x     (22) 

A new log-likelihood function is defined by 
1
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where na  and na  are the two new-added 4-by-1 mean vectors 
of the Gaussian distributions for the logF0 differences between 
current syllable and proceeding syllable, and the one between 
current syllable and following syllable; nV  and nV  are the 
two covariances of the associated Gaussian distributions; g, 
g , and g  are respectively weights for the total log-

likelihoods of nx , nx , and nx . The parameters na , na , nV  
and nV , can be obtained by a training of decision tree with a 
question set formed by features of contextual tones, contextual 
break types, and some linguistic features. Since nx  and nx  are 
linearly combined by nx , we can rewrite the new log-
likelihood function as a matrix form by 

1
2
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where μ  is a mean vector comprising na , na , and na ; R̂  is 
a square matrix composed of inverse covariance matrixes 
scaled by the inverses of the weights g, g , and g ; B is a 
transformation matrix for deriving a vector composed of nx ,  

nx , and nx . The objective function for generating the tonality-
enhanced logF0 contour is defined by  
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The optimal OECs, x̂ , can be derived by differentiation of  
ˆ ( , )U x λ  w.r.t. x: 
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It is noted that the modeling of the dynamic features may help 
keep the appropriate relative heights and shapes of the 
generated logF0 as the variance term ( )v j  is incorporated. 

5. Dynamics-Controlled OEC Generation 
By an analysis on the prosody labeled speech corpus [3], we 
found that dynamic ranges of OECs could be affected by SR, 
length of utterance, distributions of tones and break types. 
Therefore, it is desired to precisely control dynamic ranges of 
generated OECs. To this end, for each utterance, the following 
equation must be satisfied for finding the weights wj’s for the 
desired variance of each dimension of OEC, i.e.  

  ˆ ˆ ˆ ˆ( ) 0, for 0 ~ 3T
j j jh v jw x D x                   (28) 

where ŵ ={ 0ŵ , 1ŵ , 2ŵ , 3ŵ }  is the optimal weight set; ˆ ˆT
jx D x  

and ˆ jv  represents represent respectively the variance of j-th 

dimension of the generated OECs and the desired variance of 
j-th dimension. As shown in Eqs. (14) and (25), the optimal 
OEC, x̂ , is a function of the weight ŵ . To find the optimal 
weights that satisfy Eq. (28), an iterative algorithm based on 
the Newton’s method is applied to find the roots of Eq. (28), 
i.e. 0 1 2 3ˆ ˆ ˆ ˆ( , , , ) 0jh w w w w , for j=0~3. The basic form for 
updating weights can be expressed by 

( 1) ( ) ( ) ( )ˆ ˆ ˆ ˆ( ) , for all  and 
i

k k k k
i i j w jw w h h i jw w         (29) 

where k represents iteration index; 
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Since the four equations (for j=0~3) in Eq. (31) are the 
functions of wj’s, a special designed iterative algorithm is 
stated in the following to solve the roots for Eq. (28): 
Step 1: Set initial weights to be (0) (0) (0) (0) (0)

0 1 2 3ˆ ˆ ˆ ˆ ˆ{ , , , }w w w ww . 
Step 2:  Update weights by the following loops 
for j=0 to 3 

while k < a predefined maximum iteration number 
 Update jw  by the Newton's method: 

( 1) ( ) ( ) ( )ˆ ˆ ˆ ˆ( )
j

k k k k
j j j w jw w h hw w   

 If  ( )j jh w , exit the while loop, or k=k+1 
             ( j : a predefined threshold for each j-th dimension) 
end_while 

end_for 
Step 3: If ( )j jh w  for all j, go to Step 4, or go to Step 2 
Step 4:  Exit and return the optimal generated OECs, x̂ . 

6. Experimental Results 
To examine the effectiveness of the proposed methods, the 
parameters of prosodic acoustic features are generated by the 
Mandarin speaking-rate dependent hierarchical prosodic 
model (SR-HPM) [6]. The SR-HPM is trained by a female 
Mandarin speech database with four parallel speech corpora of 
slow, medium, normal and fast SRs. There are in total 1,478 
utterances with 183,795 syllables, in which 176 utterances are 
taken as test set. To generate prosodic-acoustic features by the 
SR-HPM, the prosodic break type, Bn, is first predicted given 
with linguistic feature (Ln) and a specified SR (s) by 

argmax ( | , )
nn B n nB P B sL                      (32) 

The mean vector, an, is obtained by an MMSE predictor [2]: 
1
1 1[ | , ] ( , , ) ( | , )

n

n n
n n n n n np

E t p B P pa sp B L β B L     (33) 

where ( | , )nP p B L  is the a posteriori probability for the pitch 
prosodic state which is calculated by a forward/backward 
recursion [2] given with a synthesized probabilistic model: 

1 1( | , , ) ( | , ) ( | )n n n n n n nP p p B P p p B P pL L      (34) 
where 1( | , )n n nP p p B  and ( | )nP p L  are respectively the 
prosodic state model and the prosodic state-syntax model [6]. 
The covariance matrix, Vn, is obtained by 

( ) ( | , ) ( )
n nn

t t
n p p n n np

P pV V β β B L a a     (35) 
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The proposed OEC generation algorithms are examined on 
the test set subjectively. The experiment setups are designed as 
follow: (1) BSL: OECs are generated by the baseline ML 
criterion stated in Eq. (5), (2) SMT: incorporating the juncture-
smooth criterion expressed in Eq. (12), (3) TNL: incorporating 
the likelihood terms in Section 4 that model the dynamic 
features to enhance the tonality, (4) DYC: incorporating the 
dynamics-controlled algorithm stated in Section 5, and (6) 
GNM: using the Gaussian normalization method to scale the 
OECs to the desired variance of each dimension. It is noted 
that, in the generation method by DYC and GNM, the desired 
variance of j-th dimension for an utterance, i.e. ˆ jv  for 
 0 ~ 3j  are predicted by four independent CART decision 
trees (each one for each j-th dimension) trained by samples of 
utterance-wise variances given with question sets formed by 
the features about SR, length of utterance, distribution of 
tones/break types in an utterance. The split criterion for the 
CART decision trees is likelihood gain. Besides, two 
independent decision trees are trained by the training set for 
the parameters of pre- and post- logF0 differences for the TNL 
method. The weight for TNL, i.e. g, g , and g  are 
empirically tuned by an informal listening test on the 
synthesized utterances with some texts of the training set. The 
SR is set to be a normal SR of 0.20 sec/syllable for the SR-
HPM to generate prosody. 

Mean opinion score (MOS) test and preference test were 
performed simultaneously by 11 subjects given with 10 
synthesized long utterances with lengths from 68 to 128 
syllables (101 syllables in average) for each prosody 
generation method. The texts of the 10 utterances were chosen 
from the texts in the testing set. There are four experimental 
settings for comparison: (1) Set1: +SMT vs BSL, (2) Set2: 
+SMT+TNL vs. BSL, (3) Set3:  +SMT+TNL+DYC  vs. BSL, 
and (4) Set4: +SMT+TNL+DYC vs. BSL+GNM. Table 1 
shows statistics of variances of OECs for the authentic 
utterance, BSL, and +SMT+TNL+DYC and BSL+GNM. It is 
found that the logF0 dynamics of BSL is much smaller than 
the one of the authentic speech while the dynamics of 
+SMT+TNL+DYC or BSL+GNM which is predicted by the 
decision trees can be closer to the true variances. 

Before listening to the synthesized utterances by BSL and 
the proposed methods, subjects were asked to listen to the 
authentic utterances of normal SR in the test speech corpus 
corresponding to the synthesized speeches for reference. The 
order of the synthesized utterances in the preference test is 
randomly set. Table 2 displays the results of the preferences 
and the MOSs for the subjective tests. The result in Set1 
indicates the proposed juncture-smooth generation method 
could reduce logF0 discontinuity between voiced syllable 
junctures so as to make synthesized speech more natural and 
fluent. As shown in Set2, the proposed tonality-enhanced 
method (TNL) with the juncture-smooth criterion still 
performed better than BSL but the improvement was relatively 
smaller than Set1. This degradation may be due to over-
enhancing the OEC differences between adjacent syllables. 
The significant improvement against BSL was shown in the 
result of Set3, proving that increasing dynamics of the 
generated logF0 and keeping juncture smoothness really 
improves the naturalness of the synthesized speech. In the Set4, 
the proposed method (+SMT+TNL+DYC) reached the highest 
MOS among the all subjective the testing settings and still 
performed slightly better than the baseline system with 
enhanced dynamics by GNM method. By an analysis on the 
generated logF0 contours, we found that though logF0 

contours made by BSL+GNM have the same dynamic ranges 
as the ones made by the proposed +SMT+TNL+DYC, the 
logF0 contours by BSL+GNM are sometimes not smooth-
connected on the voiced syllable junctures. Generally, 
enhancing dynamics of logF0 contours could significantly 
improve the naturalness the synthesized speech while ensuring 
logF0 smoothness on voiced syllable junctures by the 
juncture-smooth criterion could further improve the 
naturalness. Figure 2 displays an example illustrating logF0 
contours by BSL(upper), BSL+GNM(middle), and the 
proposed +SMT+TNL+DYC(lower). It is obvious to see that 
the proposed +SMT+TNL+DYC method is advantageous in 
keeping logF0 smoothness and enhancing dynamics of logF0 
at the same time – the main merit of the proposed method. 

Table 1: Averages of variances ( 410 logHz2) of OECs for 
authentic utterances, the synthesized utterances by BSL, and 
by +SMT+TNL+DYC or BSL+GNM (DYN) of the testing set. 

OEC dimension 0 1 2 3 
authentic speech 567.05 95.80 18.83 4.85 

BSL 286.86 49.15 5.79 0.97 
DYN 511.46 80.30 15.20 3.87 

 
 

Table 2: Preferences (%) and MOSs (numbers in brackets
standard deviation) for the two subjective tests. 

Set 1 Set 3 
+SMT 38% (3.47 .49) +SMT+TNL+DYC 41% (3.45 .62) 
BSL  25% (3.34 .48) BSL  25% (3.22 .56) 

No prefer. 37% No prefer. 34% 
Set 2 Set 4 

+SMT+TNL 32% (3.40 .51) +SMT+TNL+DYC 37% (3.50 .55) 
BSL  26% (3.30 .52) BSL+GNM 27% (3.43 .55) 

No prefer. 41% No prefer. 36% 
 

Figure 2: Exemplar logF0 contours by BSL (upper), 
BSL+GNM (middle), and the proposed +SMT+TNL+DYC 
(lower). 

7. Conclusions and Future Works 
This paper proposed a new logF0 contour generation method 
that combines ideas of the juncture smoothing, the tonality 
enhancing, and the dynamics enhancing. The proposed 
dynamics-controlled OEC generation algorithm can precisely 
generate synthesized speech with designated variances of 
OECs and smooth logF0 contours across voiced syllable 
junctures. The effectiveness of the proposed algorithm was 
proved by several subjective tests. In the future, it would be 
interesting to apply the proposed logF0 generation algorithm 
for emotional speech synthesis since dynamics of logF0 is 
highly correlated with types of emotions.  
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