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Abstract
We investigate the usage of convolutional neural networks
(CNNs) for the slot filling task in spoken language understand-
ing. We propose a novel CNN architecture for sequence la-
beling which takes into account the previous context words
with preserved order information and pays special attention to
the current word with its surrounding context. Moreover, it
combines the information from the past and the future words
for classification. Our proposed CNN architecture outperforms
even the previously best ensembling recurrent neural network
model and achieves state-of-the-art results with an F1-score of
95.61% on the ATIS benchmark dataset without using any ad-
ditional linguistic knowledge and resources.
Index Terms: spoken language understanding, convolutional
neural networks

1. Introduction
The slot filling task in spoken language understanding (SLU)
is to assign a semantic concept to each word in a sentence. In
the sentence I want to fly from Munich to Rome, an SLU system
should tag Munich as the departure city of a trip and Rome as
the arrival city. All the other words, which do not correspond
to real slots, are then tagged with an artificial class O. Tradi-
tional approaches for this task used generative models, such as
hidden markov models (HMM) [1], or discriminative models,
such as conditional random fields (CRF) [2, 3]. More recently,
neural network (NN) models, such as recurrent neural networks
(RNNs) and convolutional neural networks (CNNs) have been
applied successfully to this task [4, 5, 6, 7, 8].

Overall, RNNs outperformed other NN models and
achieved the state-of-the-art results on the ATIS benchmark
dataset [9]. Furthermore, bi-directional RNNs have worked best
so far showing that information from both the past and the future
is important in predicting the semantic label of the current word.
It is, however, well known that it is difficult to train an RNN due
to the vanishing gradient problem [10]. Introducing long short-
term memory (LSTM) [11] or other variants of LSTM such as
the gated recurrent unit (GRU) can solve this problem but, in
turn increases the number of parameters significantly. Previous
results reported in [8] did not show any improvement on the
ATIS data set using LSTM or GRU.

In contrast to previous papers which reported state-of-the-
art results with RNNs, we explore the usage of convolutional
neural networks for a sequence labeling task like slot filling.
Previous research in [6] showed promising results on the slot
filling task. The motivation behind this is to allow the model
to search for patterns in order to predict the label of the cur-
rent word independent of the feature representation of the pre-
vious word. Moreover, CNNs provide several advantages: it

preserves the word order information, it is faster and easier to
train and does not mix up the word sequence and therefore it is
able to interpret the features learnt for the current task to some
extent.

This study investigates the usage of CNNs for a sequential
labeling task like slot filling with the following contributions:

(1) We propose a novel CNN architecture for sequence la-
beling which takes into account the previous context words with
preserved order information and pays special attention to the
current word with its surrounding context.

(2) We extend the proposed CNN model to a bi-directional
sequential CNN (bi-sCNN) which combines the information
from past and future words for prediction.

(3) We compare the impact of two different ranking objec-
tive functions on the recognition performance and analyze the
most important n-grams for semantic slot filling.

(4) On the ATIS benchmark dataset, the proposed bi-
directional sequential CNN outperforms all RNN related mod-
els and defines a new start-of-the-art F1-score of 95.61%.

2. Related Work
Neural network models such as RNNs and CNNs have been
used in a wide range of natural language processing tasks.
Vanilla RNNs or their extensions such as LSTMs or GRUs
showed their success in many different tasks such as language
modeling [12] or machine translation [13]. Another trend is
to use convolutional neural networks for sequence labeling
[14, 15] or modeling larger units such as phrases [16] or sen-
tences [17, 18]. For both models, distributed representations of
words [19, 20] are used as input.

In the spoken language understanding research area, neu-
ral networks have also been applied to intent determination or
semantic utterance classification tasks [21, 22]. For the slot fill-
ing task, RNNs [4, 5] and their extensions [7, 8] outperformed
not only traditional approaches but also other neural network
related models [6] and defined the state-of-the-art results on the
ATIS benchmark data set. Recently it was shown in [9] that
applying ranking loss to train the model is effective for tasks
that involve an artificial class like O. They achieved state-of-
the-art F1-scores of 95.47% with a single model and 95.56% by
combining several models. In summary, the RNNs appear to be
the best model for this task to date. The only previous study
using convolutional neural networks was presented in [6] show-
ing promising results. However, it did not outperform the RNN
related models.

3. Bi-directional Sequential CNN
This section describes the architecture of the bi-directional se-
quential CNN (bi-sCNN) illustrated in Figure 1. It contains
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Figure 1: Bi-directional sequential CNN (bi-sCNN) which
combines past and future sequential CNNs for slot filling

three main components: a vanilla sequential CNN, an extended
surrounding context and a bi-directional extension.

3.1. Model

Vanilla sequential CNN. To predict the semantic slot of the
current word wt, we consider n previous words in combination
with the current word. In order to avoid the border effect, the
m future padding words are also included. Each of the words is
embedded into an d-dimensional word embedding space. Thus
for each current word, we form a matrix w ∈ R(n+m+1)×d as
an input to the CNN for prediction.

There are several possibilities for convolving the input ma-
trix: applying 1D filters to each dimension independently or ap-
plying 2D filters spanning some or all dimensions of the word
embeddings. In this paper, we use 2D filters f (with width |f |)
spanning all embedding dimensions d. This is described by the
following equation:

(w ∗ f)(x, y) =
d∑
i=1

|f |/2∑
j=−|f |/2

w(i, j) · f(x− i, y − j) (1)

where w is the word matrix and f is the filter matrix. On each
output, a nonlinear function such as the sigmoid function can be
applied. After convolution, we use a max pooling operation to
find the most important features. This function stores only the
highest activation of each convolutional filter for the succeeding
steps. If s filter matrices are used, an s-dimensional feature
representation vector cpt is created for further classification.

Extended surrounding context. When moving from one
word to the next, the input matrix changes only slightly which
leads to a large overlap of detected features from the convolu-
tional and max pooling operator. Furthermore, the model needs
to know which word is the current word for slot prediction.
Therefore, in order to pay special attention to the current word
and use the information of the word itself directly for the pre-
diction, we introduce an additional component which uses the
current word and its surrounding context words as input vector
e(wt) with d(2 ∗ cs + 1) dimensions. cs is the surrounding
context length. The feature representation of the current word
is computed as follows:

hwt = f(U · e(wt) + Vp · cpt) (2)

where U ∈ Rs×d(2∗cs+1) and Vp ∈ Rs×s.
Bi-directional sequential CNN. As reported in [9], infor-

mation not only from the past but also from the future con-
tributes to the recognition accuracy. We therefore extend the
sequential CNN to the future context. Because CNN preserves
order information, we do not scan the input text from right to
left like a bi-directional recurrent neural network. Instead, we
take n future words in combination with the current word and
the m previous padding words in the original order to form a
matrix w ∈ R(n+m+1)×d as an input to the future sequential
CNN. Convolutional and max pooling operators are applied as
in the vanilla sequential CNN to obtain a feature representation
vector cft for the future context information.

There are two different ways to combine the information
from the past and future contexts. The combination can be
achieved by a weighted sum of the forward and the backward
hidden layer. This leads to the following hidden layer output at
time step t:

hwt = f(U · e(wt) + Vp · cpt + Vf · cft) (3)

Another combination option is to concatenate the forward and
the backward hidden layer.

hwt = [f(U · e(wt) + Vp · cpt), f(U · e(wt) + Vf · cft)]
(4)

The combined hidden layer output is then used to predict the
semantic label for the current word. The experimental results
in Section 4 show that the combination method is an important
design choice that effects the final performance.

3.2. Training objective function

It was shown in [9] that using ranking loss is more accurate than
cross entropy to train the model for this task. One reason might
be that it does not force the network to learn a pattern for the
O class which in fact may not exist. In this paper, we compare
two different kinds of ranking loss functions.

The first function is the well known hinge loss function:

L = max(0, 1− sθ(wt)y+ + sθ(wt)c−) (5)

with sθ(wt)y+ and sθ(wt)c− as the scores for the target class
and the wrongly predicted class of the model given the current
word w respectively. This loss function maximizes the margin
between those two classes.

The second one was proposed by Dos Santos et al. [23]
and used in [9] to achieve the current best performance on the
slot filling task till now. Instead of using the softmax activation
function, we train a matrixW class whose columns contain vec-
tor representations of the different classes. Therefore, the score
for each class c can be computed by using the product

sθ(wt)c = hTwt
[W class]c (6)

We use the same ranking loss function as in [9] to train the
CNNs. It maximizes the distance between the true label y+ and
the best competitive label c− given a data point x. The objective
function is

L = log(1 + exp(γ(m+ − sθ(wt)y+)))
+ log(1 + exp(γ(m− + sθ(wt)c−)))

(7)

with sθ(wt)y+ and sθ(wt)c− as the scores for the classes y+

and c− respectively. The parameter γ controls the penaliza-
tion of the prediction errors and m+ and m− are margins for
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the correct and incorrect classes. γ, m+ and m− are hyper-
parameters which can be tuned on the development set. For
the class O, only the second summand of Equation 7 is calcu-
lated during training, i.e. the model does not learn a pattern
for class O but nevertheless increases its difference to the best
competitive label. Furthermore, it implicitly solves the problem
of un-balanced data since the number of class O data points is
much larger than in other classes. During testing, the model will
predict class O if the scores for all other classes are < 0.

3.3. Comparison with other neural models

The information flow of the proposed model is comparable with
a bi-directional RNN. Instead of using the recurrent architecture
to save the information from a long context, we use a convolu-
tional operator to scan all the n-grams in the contexts and find
the most important features with max pooling. At every time
step, the most important features are then learnt independently
from the previous time step. This poses an advantage over bi-
directional RNNs when the previous word is a word of class O
and the current word is not of class O because the information
to predict class O is not helpful to predict other classes. An-
other difference is the integration of future information. In the
backward RNN model, the sentence is scanned from right to
left which is against the nature of languages like English. In
contrast, the CNN keeps the correct order of the sentence and
searches for important n-grams.

Another interpretation of this model is a joint training of
a feed-forward NN and a CNN. The feedforward NN takes the
current word with its surrounding context as input for prediction
while the CNN searches for n-gram features from the past and
future contexts. The context representation of the CNN is used
as additional input of the feedforward NN. This is an advantage
of this model over the CNN model proposed in [15] which has
problems identifying the current word for labeling.

4. Experimental Results
4.1. Data

To compare our work with previously studied methods, we re-
port results on the widely used ATIS dataset [24, 25]. This
dataset is from the air travel domain and consists of au-
dio recordings of speakers making travel reservations. All
the words are labeled with a semantic label in a BIO for-
mat (B: begin, I: inside, O: outside), e.g. New York con-
tains two words New and York and is therefore labeled with
B-fromloc.city name and I-fromloc.city name
respectively. Words which do not have semantic labels are
tagged with O. In total, the number of semantic labels is 127,
including the label of the class O. The training data consists of
4,978 sentences and 56,590 words. The test set contains 893
sentences and 9,198 words. To evaluate our models, we used the
script provided in the text chunking CoNLL shared task 20001

in line with other related work.

4.2. Model training

We used the Theano library [26] to implement the model. To
train the model, stochastic gradient descent (SGD) was ap-
plied. We performed 5-fold cross-validation to tune the hyper-
parameters. The learning rate was kept constant for the first
10 epochs. Afterwards, we halved the learning rate after
each epoch and stopped the training after 25 epochs. Note

1http://www.cnts.ua.ac.be/conll2000/chunking/

that with more advanced techniques like AdaGrad [27] and
AdaDelta [28] we did not achieve improvements over SGD with
the described simple learning rate schedule. Since the learning
schedule does not need a cross-validation set, we trained the
final best model with the complete training data set. Table 1
shows the hyper-parameters used for all the CNN models.

Table 1: Hyper-parameters of sequential CNN

Parameters Value
activation function sigmoid
number of features maps 100
features map window (50, 5)
surrounding context 3
context length (past or future) 9
word embs 50
regularization L2
L2 weight 1e-7
initial learning rate 0.02

4.3. Results

We adopted the window approach proposed in [15] as the base-
line system. Five left context words, five right context words
and the current word form the input of a feed-forward neural
network with one hidden layer with size 100. We obtained an
F1-score of 94.23% and 94.14% with this simple feed-forward
network using ranking loss and hinge loss respectively. Table
2 summarizes the performance on the ATIS test set with differ-
ent CNN architectural setups. The results show that the con-
text information from the past is more important than the future
context. The future context, however, appears to provide mean-
ingful information because their combination leads to better re-
sults. Moreover, the comparison between two different kinds of
combinations of previous and future context (concatenation vs.
addition) suggests to not mix up the information using addition.
Finally, results in Table 2 also reveal that using the ranking loss
function proposed in [23] outperforms the hinge loss function.

Table 2: F1-score (%) of uni vs. bi-directional sequential CNNs
trained with two different ranking loss functions

Objectives Methods Score
Hinge loss Words with surrounding context = 5 94.14
Ranking loss Words with surrounding context = 5 94.23
Hinge loss Past sequential CNN 94.89

Future sequential CNN 93.04
Bi-directional sequential CNN (add) 94.78
Bi-directional sequential CNN (concat) 94.98

Ranking loss Past sequential CNN 95.31
Future sequential CNN 93.59
Bi-directional sequential CNN (add) 95.19
Bi-directional sequential CNN (concat) 95.61

5. Analysis
We performed analyses regarding the choice of context length,
the impact of including the current word with its surrounding
context and the most important detected n-grams.
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5.1. Context length

First, the impact of the context length on the final performance
was explored. The number of parameters remained unchanged
when reducing or increasing the context length. Short context
means information loss while a long context length potentially
adds noise to the input of the model. Table 3 shows that F1-
scores increased when increasing the context length from 5 up
to 9. Increasing the context length to 10 and 11, however, de-
creased the results slightly but the F1-scores stayed quite stable
around 95.5%. This confirms our hypothesis that a longer con-
text adds noise to the input while the model is still able to extract
the important information for slot prediction.

Table 3: Impact of the context length on the F1-score (%)

Context length 5 7 9 10 11
F1-score 94.19 95.17 95.61 95.42 95.51

5.2. Surrounding context

Table 4 summarizes the F1-score without using the current word
or with the current context with various lengths of the surround-
ing contexts. The results revealed the strong impact of includ-
ing the current word with its surrounding context into the CNN
on the final F1-score. Without paying attention to the current
word, the F1-score dropped significantly to 92.01%. Succes-
sively adding the current word and increasing its surrounding
contexts up to three left and three right neighbour words re-
sulted in better performance. Increasing the surrounding con-
text to four, however, decreased F1-score. The best F1-score
was obtained with three left and three right neighbour words.

Table 4: Impact of including the current word with surrounding
context into the CNN on the F1-score (%)

Methods F1-score
Bi-directional sequential CNN (concat)
- current word 92.01
+ current word w/o context 95.09
+ surrounding context = 1 95.21
+ surrounding context = 2 95.37
+ surrounding context = 3 95.61
+ surrounding context = 4 95.41

5.3. Most important n-grams

We analyzed the most significant patterns for the four most
frequent semantic slots in the test data. For each of them,
we present up to three n-grams which contributed the most
to scoring the correctly classified test data points. To com-
pute the most important n-grams, we first detected the posi-
tion of the maximum contribution to the dot product and traced
it back to the corresponding feature map. Based on the max
pooling, we were able to trace back and identify the n-grams
which were used. To create the results presented in Table 5,
we ranked the n-grams which were selected as the most im-
portant features in all the sentences based on frequency and
picked the most frequent ones. Table 5 shows that the model
has learnt something meaningful for this task. For exam-
ple, a pattern such as flights from A to B was used to predict
fromloc.city name while the model only used A to B or to
B for toloc.city name prediction. Other examples are pat-
terns such as afternoon, evening and night which appeared quite

frequently after depart date.day name and therefore are
learnt as indicators.

Table 5: Most important n-grams for slot prediction

Slots n-grams
fromloc.city name ’flights from washington dc to’

’flights from ontario california to’
’from toronto to san diego’

toloc.city name ’toronto to san diego’
’st. louis to burbank’

depart date.day name ’afternoon sentence end’
’evening sentence end’

’night sentence end’
airline name ’northwest us air and united’

’show delta airlines flights from’

6. Comparison with state of the art
Table 6 lists several previous results on the ATIS data set in-
cluding our best results. The proposed R-bi-sCNN outperforms

Table 6: Comparison with state-of-the-art results

Methods F1-score
CRF [5] 92.94
simple RNN [4] 94.11
CNN [6] 94.35
LSTM [7] 94.85
RNN-EM [8] 95.25
R-bi-RNN [9] 95.47
R-bi-sCNN 95.61

the previously best ranking bi-directional RNN (R-bi-RNN).
A more detailed comparison with R-bi-RNN shows that R-bi-
sCNN performed as well as R-bi-RNN on the frequent semantic
slots but outperformed R-bi-RNN on the rare slots. For exam-
ple, rare slots such as toloc.country name, days code,
period of day, which appeared less than six times in the
training data, were correctly predicted with the R-bi-sCNN
model but not with R-bi-RNN .

7. Conclusions
This paper explored convolutional neural networks for the slot
filling task in spoken language understanding. Our novel CNN
architecture - bi-directional sequential CNN - takes into account
the information from the past and the future with preserved or-
der information and pays special attention to the current word
with its surrounding contexts. To train the model, we compared
two different ranking objective functions. Our findings revealed
that not forcing the model to learn a pattern for O class is helpful
to improve the final performance. Finally, our bi-directional se-
quential CNN achieves state-of-the-art results with an F1-score
of 95.61% on the ATIS benchmark dataset without using any
additional linguistic knowledge and resources. As future work,
we aim to evaluate the proposed model on other datasets (e.g.
data presented in [29, 30]).
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