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Abstract

Recently, attempts have been made to remove Gaussian mix-
ture models (GMM) from the training process of deep neural
network-based hidden Markov models (HMM/DNN). For the
GMM-free training of a HMM/DNN hybrid we have to solve
two problems, namely the initial alignment of the frame-level
state labels and the creation of context-dependent states. Al-
though flat-start training via iteratively realigning and retrain-
ing the DNN using a frame-level error function is viable, it
is quite cumbersome. Here, we propose to use a sequence-
discriminative training criterion for flat start. While sequence-
discriminative training is routinely applied only in the final
phase of model training, we show that with proper caution it
is also suitable for getting an alignment of context-independent
DNN models. For the construction of tied states we apply a re-
cently proposed KL-divergence-based state clustering method,
hence our whole training process is GMM-free. In the exper-
imental evaluation we found that the sequence-discriminative
flat start training method is not only significantly faster than
the straightforward approach of iterative retraining and realign-
ment, but the word error rates attained are slightly better as well.
Index Terms: deep neural networks, flat start, sequence dis-
criminative DNN training

1. Introduction
While deep neural network (DNN) based speech recognizers
have recently replaced Gaussian mixture (GMM) based sys-
tems as the state-of-the-art in ASR, the training process of
HMM/DNN hybrids still relies on the HMM/GMM framework.
Conventionally, we start the training of a HMM/DNN by con-
structing a HMM/GMM system, which is then applied to get
an alignment for the frame-level state labels. These labels are
then used as the training targets for the DNN. The second task
that requires GMMs is the state tying algorithm utilized for the
construction of context-dependent (CD) phone models. We pro-
posed a GMM-free solution for state clustering earlier [1], and
in this study we will focus on the issue of obtaining the initial
state alignment for training the DNN.

The most convenient way of training the DNN compo-
nent of a HMM/DNN hybrid is by applying a frame-level er-
ror criterion, which is usually the cross-entropy (CE) function.
This solution, however, requires frame-aligned training labels,
while the training dataset contains just orthographic transcripts
in most cases. Trivially, one may train a HMM/GMM system to
get aligned labels, but this is clearly a waste of resources.

The procedure for training HMM/GMM systems without
alignment information is commonly known as ’flat start train-
ing’ [2]. This consists of initializing all phone models with the
same parameters, which would result in a uniform alignment

of phone boundaries in the first iteration of Baum-Welch train-
ing. It is possible to construct a flat start-like training proce-
dure for CE-trained DNNs as well, by iteratively training and
realigning the DNN. For example, Senior et al. randomly ini-
tialized their neural network [3], while Zhang et al. trained their
first model on equal-sized segments for each state [4]. As these
solutions have a slow convergence rate, they require a lot of
training-realignment loops.

Although training the DNN at the frame level is straightfor-
ward, it is clearly not optimal, as the recognition is performed
and evaluated at the sentence level. Within the framework of
HMM/GMM systems, several sequence-discriminative training
methods have been developed, and these have now been adapted
to HMM/DNN hybrids as well [5, 6, 7]. However, most authors
apply sequence-discriminative criteria only in the final phase of
training, for the refinement of the DNN model. That is, the
first step is always CE-based training, either to initialize the
DNN (e.g. [8, 9, 10]) or just to provide frame-level state labels
(e.g. [5, 6, 11, 12, 13]).

The Connectionist Temporal Classification (CTC) approach
has recently become very popular for training DNNs without an
initial time alignment being available [14]. Rao et al. proposed
a flat start training procedure which is built on CTC [15]. How-
ever, CTC has several drawbacks compared to MMI. First, it
introduces blank labels, which require special care in the later
steps (e.g. CD state tying) of the training process. Second,
the CTC algorithm is not a sequence-discriminative training
method, so for the best performance it has to be combined with
techniques like sMBR training [14, 15].

In contrast with the previous authors, here we propose a
training procedure that applies sequence-discriminative train-
ing in the flat-start training phase. This requires several small
modifications compared to the standard usage of sequence-
discriminative training, which will be discussed in detail. In the
experimental part we compare the proposed method with the
CE-based iterative retraining-realignment procedure of Zhang
et al. [4], and we find that our method is faster and gives
slightly lower word error rates. Furthermore, we can combine
sequence-discriminative flat start training with the Kullback-
Leibler divergence-based state clustering method we proposed
recently [1]. With this, we eliminate all dependencies from a
HMM/GMM system, making the whole training procedure of
context-dependent HMM/DNNs GMM-free.

2. Flat-start training of HMM/DNN
Conventionally, the training of a HMM/DNN system is initiated
by training a HMM/GMM just to get time-aligned training la-
bels. Here, we compare two approaches that seek to eliminate
GMMs from this process. As the baseline method, we apply a
simple solution that iterates the loop of CE DNN training and
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realignment. Afterwards, we propose an approach that creates
time-aligned transcriptions for the training data by training a
DNN with a sequence training criterion. From the wide variety
of sequence training methods, we opted for MMI (Maximum
Mutual Information) training [5]. Applying sequence training
to flat start requires some slight modifications, which we will
now discuss.

2.1. Iterative CE Training and Realignment

For comparison we will also test what is perhaps the most
straightforward solution for flat start DNN training, namely just
using the CE training criterion and iterating DNN training and
realignment. Here, we used the following algorithm that was
based on the description of Zhang et al. [4]:

1. Train a DNN using uniformly segmented sound files.

2. Use the current DNN to realign the labels.

3. Train a randomly initialized DNN using the new align-
ments.

4. Repeat steps 2–3 several times.

The final DNN was utilized to create time-aligned labels for the
training set.

The main advantage of this method is that it requires only
an implementation of CE training for the DNN, and the realign-
ment step can also be readily performed by using standard ASR
toolkits. The drawback is that the procedure of retraining and
realignment tends to be rather time-consuming, which was also
confirmed by our experiments (see Section 6).

2.2. Sequence-Discriminative Training Using MMI

Several sequence-discriminative training criteria have
been developed for HMM/GMMs [16] – and adapted to
HMM/DNNs [5, 6, 12, 17] – from which the maximum
mutual information (MMI) criterion is the oldest and sim-
plest. The MMI function measures the mutual information
between the distribution of the observation and the phoneme
sequence. Denoting the sequence of all observations by
Ou = ou1, . . . , ouTu

, and the label-sequence for utterance u
byWu, the MMI criterion can be defined by the formula

FMMI =
∑

u

log
p(Ou|Su)

αp(Wu)∑
W

p(Ou|S)αp(W )
, (1)

where Su = su1, . . . , suTu
is the sequence of states corre-

sponding toWu, and α is the acoustic scaling factor. The sum
in the denominator is taken over all phoneme sequences in the
decoded speech lattice for u. Differentiating Eq. (1) with re-
spect to the log-likelihood log p(out|r) for state r at time t, we
get

∂FMMI

∂ log p(out|r)
= αδr;sut

−
α
∑

W :st=r
p(Ou|S)

αp(W )
∑

W
p(Ou|S)αp(W )

(2)

= α
(
δr;sut

− γ
DEN

ut (r)
)
,

where γDEN

ut (r) is the posterior probability of being in state r
at time t, computed over the denominator lattices for utterance
u using the forward-backward algorithm, and δr;sut

is the Kro-
necker delta function (the binary frame-level phonetic targets).

3. Performing DNN Flat Start with MMI
Sequence training criteria like the MMI error function are now
widely used in DNN training. However, all authors initial-
ize their networks using CE training, and apply the sequence-
discriminative criterion only in the final phase of the training
procedure, to fine-tune their models [6, 12], which makes it
necessary to use some method (HMM/GMM or iterative CE
training) to provide frame-level state targets. In contrast with
these authors, here we propose to apply MMI training in the flat
start phase. In order to be able to perform flat start of randomly
initialized DNNs using sequence training, we made some slight
changes in the standard MMI process, which we will describe
next.

Firstly, we use the numerator occupancies γNUM

ut (r) in
Eq. (2) instead of the δr;sut

values. This way we can work with
smoother targets instead of the crude binary ones usually em-
ployed during DNN training. Another advantage of eliminating
the δr;sut

values is that it allows us to skip the preceding (usu-
ally GMM-based) label alignment step, responsible for gener-
ating the frame-level training targets. We applied the forward-
backward algorithm to obtain the γNUM

ut (r) values, which so-
lution has been mentioned in some studies (e.g. [6, 17]), but we
only found Zhou et al. [8] actually doing this. However, they
pre-trained their DNN with the CE criterion first, while we ap-
ply MMI training from the beginning, starting with randomly
initialized weights.

The second difference is that sequence training is conven-
tionally applied only to refine a fully trained system. Thus, the
MMI training criterion is calculated with CD phone models and
a word-level language model. This makes the decoding process
slow, and hence the numerator and denominator lattices are cal-
culated only once, before starting MMI training. In contrast to
this, we execute sequence DNN training using only phone-level
transcripts and CI phone models. This allows very fast decod-
ing, so we can recalculate the lattices after each sentence. This
difference is crucial for the fast convergence of our procedure.
For converting the orthographic transcripts to phone sequences
one can follow the strategy of HTK. That is, in the very first
step we get the phonetic transcripts from the dictionary, with no
silences between the words. Pronunciation alternatives and the
optional short pause at word endings can be added later on, per-
forming realignment with a sufficiently well-trained model [2].

A further difference is that we use no state priors or lan-
guage model, which makes the α scaling factor in Eq. (2) un-
necessary as well. Next, to reduce the computational require-
ments of the algorithm, we estimated γDEN

ut (r) using just the
most probable decoded path instead of summing over all possi-
ble paths in the lattice (denoted by γ̂DEN

ut (r)).
With these modifications, the gradient with respect to the

output activations (aut) of the DNN is found using

∂FMMI

∂aut(s)
=

∑

r

∂FMMI

∂ log p(out|r)

∂ log p(out|r)

∂aut(s)
(3)

= γ
NUM

ut (s)− γ̂
DEN

ut (s),

which can be applied directly for DNN training. A standard
technique in DNN training is to separate a hold-out set from
the training data (see e.g. [18]). If the error increases on this
hold-out set after a training iteration, then the DNN weights are
restored from a backup and the training continues with a smaller
learning rate. This strategy can be readily adapted to sequence
DNN training [5], and we found it to be essential for the stability
of our flat-start MMI DNN training method.
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(1) Frame-level phonetic targets (γNUM

ut (r)) are deter-
mined by a forward-backward search.

(2) We use only phoneme-level transcripts and CI
phoneme states.

(3) We do not use state priors or language model.
(4) We estimate γDEN

ut (r) by just the most probable
decoded path (γ̂DEN

ut (r)).
(5) We measure training error on a hold-out set; when

the error increases after a training iteration, we re-
store the weights and lower the learning rate.

Table 1: Summary of our modifications on MMI training for
DNN flat start.

Table 1 summarizes the modifications that wemade to make
MMI suitable for DNN flat start. Note that steps (1) through
(4) seek to simplify the procedure both to speed it up and to
make it more robust. Step (2) also helps us to perform sequence-
discriminative DNN training before CD state tying, which is es-
sential for applying it in flat start. Step (5), however, is applied
in our general DNN training process, but we found it essential
to avoid the “runaway silence model” issue which is a common
side effect haunting sequence-discriminative DNN training.

4. KL divergence-based CD state tying
Having aligned the CI phone models using flat-start training,
the next step is the construction of CD models. Currently, the
dominant solution for this is the decision tree-based state tying
method [19]. This technique pools all context variants of a state,
and then builds a decision tree by successively splitting this set
into two, according to one of the pre-defined questions. For
each step, it fits Gaussians on the distribution of the states, and
chooses the question which leads to the highest likelihood gain.
However, modeling the distribution of states with a Gaussian
function might be suboptimal when we utilize DNNs in the final
acoustic model.

To this end, we decided to first train an auxiliary neural
network on the CI target labels and then perform the CD state
tying based on the output of this network. Such a frame-level
output can be treated as a discrete probability distribution, and a
natural distance function for such distributions is the Kullback-
Leibler (KL) divergence [20]. Therefore, to control the state ty-
ing process, we utilized the KL divergence-based decision crite-
rion introduced by Imseng et al. [21, 22]. We basically replaced
the Gaussian-based likelihood function with a KL-divergence
based state divergence function; in other respects, the mecha-
nism of the CD state tying process remained the same. With
this technique we were not only able to eliminate GMMs from
the state tying process, but we also achieved a 4% reduction in
WER. For details, see [1].

5. Experimental Setup
Our experimental setup is essentially the same as that of our
previous study [1]. We employed a DNN with 5 hidden layers,
each containing 1000 rectified neurons [23], while the softmax
activation function was applied in the output layer. We used
our custom DNN implementation for GPU, which achieved out-

Flat start State tying WER % No. of
method method Dev. Test epochs

GMM + ANN GMM 18.83% 17.27% —
GMM + ANN KL 17.12% 16.54% —

Iterative CE
KL

16.81% 16.50% 48
MMI 16.50% 15.96% 13
MMI + CE 16.36% 15.86% 29

Table 2: Word error rates (WER) for the different flat start and
state tying strategies.

standing results on several datasets (e.g. [24, 25, 26, 27, 28]).
We used 40 mel filter bank energies as features along with their
first and second order derivatives. Decoding and evaluation was
performed by a modified version of HTK [2].

The 28 hour-long speech corpus of Hungarian broadcast
news [29] was collected from eight TV channels. The train-
ing set was about 22 hours long, a small part (2 hours) was used
for validation purposes, and a 4-hour part was used for testing.
We used a trigram language model and a vocabulary of 500k
word forms. The order of utterances was randomized at the be-
ginning of training. We configured the state tying algorithms to
get roughly 600, 1200, 1800, 2400, 3000 and 3600 tied states.

We tested four approaches for flat start training (i.e. to get
the frame-level phonetic targets for CD state tying and CE DNN
training). Firstly, we applied the standard GMM-based flat-start
training to produce initial time-aligned labels. To further im-
prove the segmentation, we trained a shallow CI ANN using the
CE criterion and re-aligned the frame labels based on the out-
puts of this ANN (we will refer to this approach as the “GMM
+ ANN” method). (In our previous study we found that using
a deep network for this re-alignment setup did not give any sig-
nificant improvement [1].) After the realignment, we applied
both the standard GMM-based and our KL-criterion algorithms
for state tying. Then KL-based state tying was performed on
the output of the CI ANN.

Besides the standard GMM flat start approach, we evalu-
ated the two algorithms presented in sections 2 and 3 for flat
starting with DNNs. In these tests we always used five-hidden-
layer CI DNNs. For the flat-start method with iterative CE
training (“Iterative CE”) we performed four training-aligning
iterations, and KL-based CD state tying was performed using
the output and the alignments created by the final DNN. For
MMI training (“MMI”) we also commenced with a randomly
initialized CI DNN. After applying the discriminative sequence
training method proposed in Section 3, the resulting DNN was
used to create forced aligned labels and also to provide the input
posterior estimates for KL clustering. In the last flat start ap-
proach tested, we first applied the sequence-discriminative flat
start method (i.e. “MMI”). Then, based on the alignments of
this network, we trained another DNN with the CE criterion to
supply both the final frame labels and the likelihoods for KL-
based CE state tying (“MMI + CE”).

The aim of this study was to compare various flat-start
strategies. This is why, after obtaining the CD labels, the final
DNN models were trained starting from randomly initialized
weights and using just the CE criterion. Of course, it might be
possible to extend the training with a final refinement step using
sequence-discriminative training.
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Figure 1: WER as a function of the number of KL-clustered tied states on the development (left) and test (right) sets.

6. Results and Discussion
Figure 1 shows the resulting WER scores as a function of the
number of CD tied states. As can be seen, the MMI-based
flat start strategy gave slightly better results than the iterative
method in every case. We also observed that the final CD mod-
els which got their training labels from the MMI-trained DNN
were more stable with respect to varying the number of CD
states. Fine-tuning the labels of the MMI-trained DNN with
a CE-trained DNN (“MMI” vs. “MMI+CE”) seems unneces-
sary, as it was not able to significantly improve the results. This
indicates that sequence training yields both fine alignments and
good posterior estimates.

Table 2 summarizes the best WER values on the develop-
ment set, and the corresponding scores on the test set. The KL
clustering method clearly outperformed the GMM-based state
tying technique. Comparing the alignment methods, we see
that relying on the alignments produced by the HMM/GMM
resulted in the lowest accuracy score, in spite of the fine-tuning
step using an ANN. With the parameter configurations applied,
the iterative CE training method performed slightly worse than
the MMI-based strategies. Unfortunately, for the iterative CE
method the right number of training-aligning steps is hard to
tune. For example, Zhang et al. performed 20 such itera-
tions [4], while we employed only 4 iterations. In this respect,
it is more informative to compare the training times, which are
shown in the rightmost column of Table 2. (We did not indi-
cate the number of epochs for the “GMM + ANN” method,
as the training procedure was radically different there.) For
our 28-hour dataset, 48 epochs were required by the four it-
erations of iterative CE flat-start training, while MMI required
only one-fourth of it; and although performing the forward-
backward search adds a slight overhead to the training process,
it is clear that MMI was still much faster, even when the final
CE re-alignment step was also involved.

Measuring the training times in CPU/GPU time gives even
larger differences in favor of the MMI method (3 hours vs. 16
hours). The reason is that for iterative CE flat-start training we
used a mini-batch of 100 frames (which we found optimal previ-
ously [1]), while for MMI whole utterances (usually more than
1000 frames) were used to update the weights, and this allowed
better parallelization on the GPU.

In our view, two modifications are crucial for the speed and

stability of the proposed algorithm. The first one is that we use
only CI phone models without phone language model, so we
can very quickly update the numerator and denominator lattices
after the processing of each sentence. This continuous refine-
ment of the frame-level soft targets obviously leads to a faster
convergence. The only study we know of, which does not per-
form the re-alignment of the frame-level targets strictly after a
training iteration, is that of Bacchiani et al. [30]. Their study
focuses on describing their massively parallelized online neu-
ral network optimization system, where a separate thread is re-
sponsible for the alignment of the phonetic targets, while DNN
training is performed by the client machines. Besides the fact
that in their model there is no guarantee for that the alignment of
phonetic targets are up-to-date, it is easy to see that their archi-
tecture is quite different from a standard DNN training architec-
ture, making their techniques pretty hard to adapt. In contrast,
our slight modifications can be applied relatively easily.

As regards stability, a known drawback of sequence training
methods is that the same process is responsible both for align-
ing and training the DNN, which often leads to the “run-away
silence model” issue [31]. That is, after a few iterations, only
one model (usually the silence model) dominates most parts of
the utterances, which is even reinforced in the next training step.
To detect the occurrence of this phenomenon, we monitored the
error rate on a hold-out set during training. If the error increased
after an iteration, we restored the weights of the network to their
previous values and the learning rate was halved. In our expe-
rience, restoring the weights to their previous values and con-
tinuing the training using a lower learning rate can successfully
handle this issue.

7. Conclusions
Here, we showed how to perform flat start with sequence-
discriminative DNN training. We applied the standard MMI se-
quence training method, for which we introduced several minor
modifications. Our results showed that, compared to the stan-
dard procedure of iterative CE DNN training and re-alignment,
not only were we able to reduce the WER scores, but we also
achieved a significant reduction in training times. By also uti-
lizing the Kullback-Leibler divergence-based CD state tying
method proposed earlier, we made the whole training procedure
of context-dependent HMM/DNNs GMM-free.
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[29] T. Grósz and L. Tóth, “A comparison of Deep Neural Network
training methods for Large Vocabulary Speech Recognition,” in
Proceedings of TSD, Pilsen, Czech Republic, 2013, pp. 36–43.

[30] M. Bacchiani, A. Senior, and G. Heigold, “Asynchronous, on-
line, GMM-free training of a context dependent acoustic model
for speech recognition,” in Proceedings of Interspeech, Singapore,
Singapore, Sep 2014, pp. 1900–1904.

[31] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for se-
quence training of context-dependent deep networks for conversa-
tional speech transcription,” in Proceedings of ICASSP, 2013, pp.
6664–6668.

3413


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Gabor Gosztolya
	Also by Tamas Grosz
	Also by Laszlo Toth
	----------

