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Abstract
Ultrasound imaging of the tongue and videos of lips 
movements can be used to investigate specific articulation in 
speech or singing voice. In this study, tongue and lips image 
sequences recorded during singing performance are used to 
predict vocal tract properties via Line Spectral Frequencies 
(LSF). We focused our work on traditional Corsican singing 
“Cantu in paghjella”. A multimodal Deep Autoencoder (DAE) 
extracts salient descriptors directly from tongue and lips 
images. Afterwards, LSF values are predicted from the most 
relevant of these features using a multilayer perceptron. A 
vocal tract model is derived from the predicted LSF, while a 
glottal flow model is computed from a synchronized 
electroglottographic recording. Articulatory-based singing 
voice synthesis is developed using both models. The quality of 
the prediction and singing voice synthesis using this method 
outperforms the state of the art method.  
Index Terms: rare singing, ultrasound imaging, vocal tract 
modeling, Deep Neural Networks 

1. Introduction 
A better understanding of the mechanisms of singing 
performance could lead to several applications, such as 
improved singer trainings or singing voice synthesis 
applications. Recording articulatory data such as tongue and 
lips movements can provide much information on how the 
vocal tract filters the airflow during a singing performance. 
One non-invasive and real-time solution is to record mid-
sagittal images showing tongue motion with an ultrasound 
probe placed beneath the chin. Lips information can be 
obtained with a camera. In this work, we used the combination 
of lips movement acquired with a camera and tongue 
movement recorded with an ultrasound probe, both embedded 
on a hyper-helmet (see Figure 1), to study singing voice 
articulation. Synchronized audio and electroglottographic 
(EGG) signals are also recorded [1]. However, using these 
recordings to extract vocal tract configuration is not 
straightforward: expert knowledge is necessary to find relevant 
information within the data, furthermore such multimodal 
recordings are difficult to integrate into a common 
interpretation. We hypothesized that the non-linear 
information in lips and tongue images could be efficiently 
modeled with a bimodal deep autoencoder [2], designed to 
process two different modalities which are lips pictures and 
tongue ultrasound images. Deep neural networks, very popular 

in signal processing since 2006 [3], are used in this work to 
find a data-driven shared representation between lips and 
tongue that contains articulatory information in an 
unsupervised fashion. This model is able to capture 
articulatory information which we attempt to map onto LSF. 
We used the shared representation given by the autoencoder as 
an input for a multilayer perceptron whose aim is to compute 
LSF from these given features. We hypothesized that EGG 
signals could be used with these predicted LSF for singing 
voice resynthesis. Our research is based on a Corsican singing 
corpus, recorded at a high frame rate (60 frames per second). 
Section 2 deals with datasets and data preprocessing, and a 
description of our deep autoencoder is given section 3. A 
quality evaluation of reconstructed LSF and singing voice is 
given section 4, compared with a linear model based on 
EigenLips and EigenTongues [4]. Results are discussed 
section 5. 

2. Input data 

2.1. Data acquisition 
Data were acquired with a multi-sensor helmet (see Figure 1). 
Among many other sensors, an ultrasound probe attached on 
the helmet enabled the acquisition of ultrasound tongue data at 
60 Hz. We used a lightweight and portable ultrasound 
machine, Terason T3000. Data were exported to a portable PC 
via Firewire (see [1] for details). In the meantime, lips data 
were recorded thanks to a camera at the same frame rate. Both 
audio and EGG were sampled at 44.1 kHz. 
We investigated traditional Corsican singing synthesis. This 
type of singing is described in [5]. Our dataset consists of 5 
traditional songs in both Latin and Corsican, including some 
repetitions. This base is made of 43,413 images for each 
modality, totalizing 723.55 seconds (about 12 minutes). This 
dataset includes both voiced and unvoiced sounds. Silences 
were not removed from the dataset. 

The dataset was partitioned into a training and validation 
set made of 35000 images and a test set of 5000 images for 
each modality. The training and validation set was used as a 
reference for the feature extraction step: it was used to train 
the autoencoder, and to find the EigenTongues and EigenLips. 
Those models were subsequently applied on the independent 
test set without retraining. For the LSF prediction, the features 
extracted from the training and validation set were subdivided 
randomly to feed a multilayer perceptron (MLP), 60% of the 
examples were used for training and 40% for validation. The 
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MLP was subsequently fed using the features extracted from 
the independent test set, without retraining. 
 

 
Figure 1: Picture of the acquisition systems, which 
embeds several sensors. 1: multi-sensor helmet, 2: 
Nose-mounted accelerometer, 3: Camera, 4: 
Ultrasound probe, 5: Electroglottograph, 6: 
Microphone, 7: Breathing belt. 

      
Figure 2: Examples of tongue and lips data. 

2.2. Data pre-processing 
Limiting the size of the inputs is necessary in order to keep the 
subsequent analyses computationally tractable. Both 
grayscales lips and tongue images were reduced (30x33 
pixels) before being fed as an input to a deep autoencoder. 
Synchronized audio signals were used to compute LSF 
coefficients and LPC residual, and filtered with a pre-emphasis 
filter (�=0.95). Since 60 ultrasound frames are acquired per 
second, target LSF were computed every 16.7 ms: Hamming 
windows were applied to audio signal epochs of 33 ms each 
with a 50 percent overlap between epochs. 

3. Automatic feature extraction 

3.1. Specific constraints 
We modeled two different kind of data, namely lips and 
tongue ultrasound pictures, using a multimodal autoencoder 
(see Figure 3). Previous investigations reported successful 
applications of multimodal autoencoders to bimodal data, for 
instance for audio and video data integration [2]. To ensure 
that the autoencoder captures the relationship between lips and 
tongue, we did not directly feed the encoder with a 

concatenation of lips and tongue data. The first step was to 
train separate restricted Boltzmann machines (RBMs) for lips 
and tongue data. Then the output of these RBMs were used as 
an input for another RBM, whose role was to capture a shared 
representation. Since we seek to reduce the size of our hidden 
representation as compared to the input, we added another 
hidden layer. 

Whereas tongue images have a high signal to noise ratio, 
ultrasound images may be corrupted by strong speckle noise. 
We decided to use a denoising autoencoder [6] (see Figure 4) 
for ultrasound data in order improve the network robustness to 
speckle noise. Given an input vector �, we created a corrupted 
version of �, ��, by adding some speckle noise (see Figure 5) to �. During training stage, we use �� instead of � as an input of 
the first RBM. The output of this first RBM, �, must be similar 
to �, which means that we removed the additional noise. For 
this purpose, we use target � in the cost function ����� �	. 
Corrupted data is used only in the training stage. 

 
Figure 3: structure of a multimodal autoencoder that 
can capture the deep hidden representation between 
lips and tongue data. 

 
Figure 4: Principe of denoising autoencoders. A 
corrupted version �� of an input vector � is used to 
train the first RBM and make it robust to speckle 
noise, from [6].
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Figure 5: Example of ultrasound image and the same 
image corrupted by additional speckle noise of 
variance 0.04. 

3.2. Autoencoder parameters, initializations and 
training 
A deep autoencoder, built by stacking RBMs, was used to 
extract salient descriptors of articulatory data from lips and 
tongue images. We used a symmetric autoencoder with 4 
hidden layers of size 200 for the separate RBMs and 100, 200 
and 100 respectively for the shared RBMs. Autoencoder is 
first randomly initialized before RBM training. In order to 
improve the reconstruction performances of the autoencoder, 
the maximum number of epochs during training was set to 
500. The size of mini-batches was set to 100. The choice of 
these hyperparemeters was motivated by series of test showing 
the relationship between parameters and quality of 
reconstructed LSF. An example of hyperparameter 
optimization is given Table 1. The number of hidden units for 
RBM 1 is chosen in order to minimize the mean Spectral 
Distorsion (see section 5.1). 

Table 1 Optimization of the number of hidden units for 
RBM 1 according to spectral distorsion scores. 

Number of hidden units for 
RBM 1 

Mean Spectral Distorsion 
(dB) 

100 4.6 
200 4.3 
400 4.5 

 

4. LSF mapping 

4.1. Variable selection 
The mapping between hidden representation computed from 
lips and tongue images and target LSF coefficients was 
performed with one feedforward MLP network for each of the 
12 LSF coefficients. Before using the hidden representation 
captured by the autoencoder as an input for a feedforward 
neural network, we performed a feature selection. The aim is 
to reduce the complexity of the neural network in charge of the 
regression of LSF coefficients. Indeed, the number of input 
features conditions the number of parameters of the model, 
and has a direct impact on overfitting risks. Feature selection 
was performed using the Orthogonal Forward Regression 
(OFR) method [7]. Input variables are ranked according to 
their linear correlation with a given output. Once a variable is 
selected, the other variables and the output are projected in a 
hyperplane which is orthogonal to the selected variable. This 
prevents the algorithm from selecting features containing the 
same information, using the Gram-Schmidt orthogonalization 
procedure. The aim of this algorithm is to select features 

among a large set of variables that can be strongly correlated. 
Random variables, referred to as “probes”, were added to the 
feature set. Variables less correlated to the output than 95% of 
the probes were removed. In order to reduce even more the 
number of parameters of the model to control overfitting risks, 
we kept only a third of the remaining variable, resulting in 
about 30 variables per LSF. 

4.2. LSF estimation 
Selected variables were used as inputs of one MLP per 

LSF. We optimized the number of hidden units according to 
the lowest validation error. The 12 MLP trained for the LSF 
mapping had 26-33 input units, 1-7 hidden units and 1 output  
(each corresponding to one of the 12 LSF coefficients). 
Because LSF coefficients are not in the range [0-1], we used a 
sigmoid activation function between input and hidden layer 
and a linear activation function between hidden layer and 
output. 

4.3. Comparison with state of the art methods 
In order to validate our nonlinear feature extraction method, 
we compared its performances to the performances achieved 
with a linear state-of-the art method based on the extraction of 
the EigenLips and EigenTongues [4]. Inspired by EigenFaces 
in [8], this method uses Principal Components Analysis 
performed on tongue and lips images. The idea is to create a 
finite set of orthogonal images, named EigenLips and 
EigenTongues. Every tongue or lips configuration can be 
represented in this space by projection over EigenTongues and 
EigenLips. This representation encodes significant structural 
informations about lips and tongue [4]. 

5. Quality assessments 

5.1. Quality measurements 
Quality measurements were estimated on the 5000 examples 
from the independent test set, without retraining. Output 
predicted LSF were most of the time in the range of original 
LSF. Direct comparisons between true LSF and their predicted 
version using either EigenLips and EigneTongues or 
Multimodal Autoencoder (see Figure 6 and Figure 7) is 
completed by a numerical evaluation, the so-called spectral 
distorsion 
�. 

 
Figure 6 Comparing true vs. estimated LSF in the test 
set using Multimodal Autoencoder on the first LSF. 
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Figure 7 Comparing true vs. estimated LSF in the test 
set using EigenLips and EigenTongues on the first 
LSF. 

Spectral distorsion is a measure in decibels of the distance 
between two spectra � and �
. Its expression is given below: 


� � � �� �������	 � ���� ����� ��� !"#$%& '
�()*"#$%& +�

,--
,

����./�0 1 (1) 

Where 2� � 3 and 2� � 4��, which means power spectra � 
and �
 are compared in the range 129-4307 Hz, with frequency 
bins of 21.5 Hz. We also use a differential MOS score, defined 
with a reference “transparent” distortion of 1dB in [9] by the 
expression: 
 56
 � 7893 : ��8;�
� < �8�=�
�,   (2) 

 >56
�
�	 � �56
�
�	 : 56
��?@	  (3) 
 
Spectral distortion and differential MOS scores are given in 
Table 2. 
 

Table 2 Spectral distortion and differential MOS 
scores for our two methods and a reference distorsion 
of 1 dB, transparent for listeners. 

Method Spectral distortion 
(dB) 

Differential MOS 

“Transparent” 1 0 
Multimodal 
Autoencoder 

4.3 -1.9 

EigenLips and 
EigenTongues 

5.2 -2.3 

 
These results demonstrate that our new method outperforms 
state of the art methods on a dataset made of rare traditional 
singing. Using predicted LSF can be used to investigate the 
specific influence of the position of the tongue or the 
roundness of the lips used in this technique. 

5.2. Singing voice resynthesis 
Predicted LSF can be converted into LPC coefficients to build 
a vocal tract model. We can use the source-filter model for 
voice synthesis. We used different types of sources in order to 
compare intelligibility of the reconstructed sound. Since true 

LSF were computed with audio signals, we can use LPC 
residuals as source reference. Noise activation will produce 
whispered voice. EGG signals could not be used directly as a 
source: this correlate of the glottal activity is too indirect and 
noisy.  We used some source information extracted from the 
derivative of EGG signals (dEGG) using the Voicebox toolbox 
[10] to estimate the parameters of a glottal flow model based 
on the CALM model presented in [11]. CALM parameters 
such as fundamental frequency, open quotient and asymmetry 
coefficient were derived from EGG signals. We compared this 
source with a direct application of dEGG as an activation for 
synthesis (which led to an unnatural voice resynthesis). Figure 
8 shows the overall architecture of our synthesizer.   Listening 
tests were conducted on a population of 84 subjects, with the 
aim of comparing different audio samples (see additional 
materials DAE.wav, Eigen.wav and Ref.wav, respectively 
autoencoder, EigenLips/EigenTongues and true LSF 
synthesized with residual source)  These tests confirm that the 
deep autoencoder outperforms linear models, and that the 
glottal flow model we used, as expected, allows a much better 
resynthesis than dEGG or white noise (and in some cases 
tends to reach the quality of a reconstruction using residuals). 

 
Figure 8 Schematic view of the synthesis process. 
Articulatory images are used to predict LSF values 
using a deep autoencoder (DAE). Orthogonal 
Forward Regression is used to to select the best 
features. A Multilayer Perceptron (MLP) predict LSF 
values. According to a voiced/unvoiced criterion, 
excitation signal is either a glottal flow derivative 
model (GFD) or noise. 

6. Conclusion and perspectives 
In this work, we presented a novel method of articulatory-
based singing voice synthesis, based on the use of a 
multimodal autoencoder. The use of articulatory information 
can serve both pedagogical and artistic issues. As expected, 
the multimodal autoencoder is able to extract salient features 
from lips and tongue images, even if the formalism does not at 
this point allow us to understand the precise character of the 
extracted information. These features are used to predict LSF 
values using an MLP as in [9] and [4]. This study shows that 
our multimodal model outperforms EigenLips and 
EigenTongues, which is not surprising if we consider that 
EigenLips and EigenTongues are based on linear PCA 
whereas Multimodal Autoencoder is non-linear. The excitation 
signal is synthesized using CALM model, whose parameters 
are estimated from EGG signals. Synthesis using our 
multimodal architecture and our synthetic glottal flow models 
are of satisfying quality. 
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