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Abstract
In this paper, a novel non-parametric based glottal closure in-
stant (GCI) detection method after filtering the speech signal
through a pulse shaping filter is proposed. The pulse shap-
ing filter essentially de-emphasises the vocal tract resonances
by emphasising the frequency components containing the pitch
information. The filtered signal is subjected to non-linear pro-
cessing to emphasise the GCI locations. The GCI locations are
finally obtained by a non-parametric histograms based approach
in the detected voiced regions from the filtered speech signal.
The proposed method is compared with the two state-of-the-
art epoch extraction methods : Zero frequency filtering (ZFF)
and SEDREAMS (both of which requires upfront knowledge of
average pitch period). The performance of the method is evalu-
ated on the complete CMU-ARCTIC dataset consisting of both
speech and Electroglottograph (EGG) signals. The robustness
of the proposed method to the additive white noise is evalu-
ated with several degradation levels. The experimental results
showed that the proposed method is indeed immune to noise and
the obtained results are comparably better than the two state-of-
the-art methods.
Index Terms: GCI locations, pulse shaping filter, pitch, his-
togram

1. Introduction
The major source of excitation to the time-varying vocal tract
system is impulse like excitation. The impulsive excitation
is due to the glottal activity during the production of voiced
speech [1]. The impulsive excitation to the time varying vocal-
tract system is manifested as abrupt discontinuity in the pro-
duced speech. The discontinuity due to impulsive excitation in
the speech signal can be observed in the linear prediction resid-
ual (LPR) as either positive or negative peaks [2]. The location
of peaks in the LPR roughly corresponds to the GCI of the glot-
tal activity [3] and they are also known as the instants of signifi-
cant excitation or epoch. The accurate detection of GCIs plays a
significant role in most of the speech tasks such as extracting the
pitch contour of the quasi-periodic speech signal [4], pitch syn-
chronous analysis of speech [5, 6], epoch based prosody mod-
ification [7], melody extraction from vocal polyphonic music
signals [8], glottal flow estimation [9], speech synthesis [10],
voice source modelling for parametric speech synthesis [11]
and so on. In literature, we can find GCI detection methods
mostly based on either smoothing (filtering) or computing the
energy envelope of the signal prior to GCI detection. The GCI
detection methods includes : Hilbert-Envelope [12], ZFF [1],
SEDREAMS [13], LOMA [14], YAGA [15] and DYPSA [16].
For more detailed review on GCI detection methods refer [17].

In this work, speech is filtered using Raised Cosine Filter
(RCF). The RCF is a pulse shaping low-pass filter widely used
in digital communication for minimizing the inter symbol in-
terference. Initially, the RCF filtered speech signal is thresh-
olded to detect the voiced/unvoiced regions. In each identi-
fied voiced regions, the peaks corresponding to the GCIs are
emphasised by non-linear filtering. Followed by a novel av-
erage epoch interval detection method based on the histogram
and GCI detection based on peak picking approach is pro-
posed. The source code of the proposed method is available
at https://github.com/Pradeepiit/GCIDetection.git

2. Proposed Method
The block diagram of the proposed GCI detection method is
illustrated in Figure 1. Initially the vocal tract resonances are
suppressed by passing the speech signal through RCF, followed
by voiced and unvoiced classification, candidate epoch interval
(difference between successive GCIs) detection of each voiced
region based on histograms, finally GCIs are obtained by peak
picking. The implementation details of each block is discussed
in the following subsections.

Speech
Signal

RCF
Voiced/UV
Detection

Epoch
Interval

Detection

Peak
Picking

GCI
Detection

Figure 1: Block diagram of the proposed GCI detection method.

2.1. Pre-processing

Initially, the speech signal is passed through a DC removal filter
to suppress the slowly varying frequncy components near the
0 Hz. The filter is essentially a single pole-zero filter and its
transfer function is given by

H(z) =
1− z−1

1− αz−1
(1)

The discrete time equivalent of the above transfer function is
given by

x[n] = αx[n− 1] + s[n]− s[n− 1] (2)

where s[n] is the input speech signal, x[n] is the filtered signal.
An optimal value of 0.98 is chosen for α, decides the sharpness
of the attenuation of slowly varying frequency components near
0 Hz.

The RCF [18] is a low-pass, truncated finite impulse re-
sponse filter with frequency response given by
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Figure 2: Illustration of RC filtering of speech signal followed
by non-linear processing for emphasizing the epoch locations.
A segment of speech signal, RC filtered signal, positive clipped
and inverted signal, and resulting squared signal is shown in
(a), (c), (e) and (g) respectively. The corresponding spectro-
gram of the time domain signals are shown in (b), (d), (f) and
(h) respectively.

H(f) =

⎧⎪⎨
⎪⎩
T , |f | ≤ 1−β

2T
T
2
[1 + cos (z)] , 1−β

2T
≤ |f | ≤ 1+β

2T

0 , otherwise

where

z =
πT

β

[
|f | − 1− β

2T

]
(3)

The discrete time impulse response is given by

h[n] =
sinπn/T

πn/T

cos(πβn/T )

1− (4β2n2/T 2)
(4)

Where T = 1/fc, fc is the pass-band frequency edge and β
is the pass-band roll-off factor. As β increases, the sharpness
of pass-band edge decreases and hence the frequency content
is passed beyond the desired band (an optimal value of 0.25 is
chosen for β). For a realizable RCF, the theoretical bandwidth
of the filter (B) is given by B = (1 + β)fc [19] where, fc
is chosen as 250 Hz which results in a pass-bandwidth of ap-
proximately 400 Hz. A slightly higher pass-band frequency
than the fundamental frequency range (85−255Hz) of normal
male and female speakers is chosen to include the pitch infor-
mation of other type of signals such as emotional speech and
para-linguistic (laughter). The filtered signal y[n] is obtained as
the convolution of the signals x[n] and h[n] given by

y[n] = x[n] ∗ h[n] (5)

where ∗ is the convolution operator.
The output of filtered signal y[n] essentially contains the

information about the GCI as predominant peak within a pitch
period. A segment of a speech signal, output of the RC filtered
speech signal and the corresponding spectrograms are shown
in Figure 2(a), (c), (b) and (d) respectively. From Figure 2(c)
and (d) we can observe that RCF indeed preserved the disconti-
nuities due to impulsive excitation (GCI locations) as predom-
inant peaks in the filtered signal by removing other frequency
contents.

2.2. Voiced/Unvoiced Detection

Voiced and unvoiced (V/UV) segments refers to the glottal and
non-glottal activity regions in the speech signal. The V/UV re-
gions in the RCF filtered signal is obtained by thresholding the

signal with a factor of δ = 1
12

th
of the maximum peak to retain

even the lower excitation regions in the smoothed signal. The
value for δ is obtained by experimental analysis of the dataset.

2.3. Candidate Epoch Interval Detection

The locations corresponding to the significant excitation are
manifested as a strong discontinuity (peak or valley) within a
pitch period of the voiced signal. The peaks corresponds to
the GCIs can be observed as strong peaks within a pitch pe-
riod. This can be observed in either the negative or positive
half of the voiced regions in y[n] along with other significantly
comparable peaks. In order to unambiguously detect the lo-
cations corresponding to GCI, the peaks corresponding to the
epoch locations needs to be emphasized while suppressing the
other comparable magnitude peaks. Hence, the smoothed signal
is subjected to a non-linear filtering as shown in the block dia-
gram in Figure 3. The significance of each block is explained in
the following subsections.

Voiced
Segment

Inversion?
Negative
Clipping

Squaring

Histogram
Based

Thresh-
olding

GCI
Extraction

Figure 3: Block diagram illustration of the non-linear filtering
for GCI detection.

2.3.1. Inversion for Unambiguous Significant Excitation De-
tection

Instants of significant excitation is shown as either a promi-
nent positive peak or negative valley within a pitch period of
the voiced segment. The choice of positive or negative portion
of the voiced segment for GCI detection depends on the mag-
nitude deviation between two successive peaks or valleys and
the number of peaks or valleys within the pitch period. The
decision for clipping and inversion is made based on the fol-
lowing criterion for reliably detecting the GCI locations. The
significant peaks in the positive (NV ) and negative (IV ) seg-

ment of the voiced segment is identified by thresholding 1
6

th

of the maximum peak. This will capture the dominant peaks
and other significant peaks. The set with minimum number of
peaks is considered for further analysis since, it contains mostly
the peaks corresponding to GCI locations. A voiced segment
which requires inversion is shown in Figure 4. A segment of
voiced speech, filtered signal and the inverted signal is shown
in Figure 4(a), 4(b) and 4(c) respectively. From Figure 4(c)
we can observe that the prominent peaks corresponding to sig-
nificant excitation is shown clearly in the positive portion of the
signal without any ambiguity.

2.3.2. Negative Clipping

The positive half of the signal containing the significant peaks
are retained and the remaining half is clipped off. The clipped
signal essentially retains the harmonic content in the signal with
an added DC component in the signal which can be observed in
Figure 2(e) and 2(f).

2.3.3. Squaring

The clipped signal is further squared to enhances the prominent
peaks and to suppress the other peaks within a voiced segment.
This has the effect of enhancing the strong excitation regions
and suppressing the weak excitation region which is as shown
in Figure 2(g) and 2(h) respectively. The negative clipping and
squaring leads to non-linearity in the filtered signal.
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Figure 4: Illustration of inversion process (a)Voiced speech seg-
ment, (b) RC filtered signal and (c) inverted RC filtered signal.
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Figure 5: Illustration of the histogram based segregation of can-
didate peaks corresponding to GCIs and other peaks. Figures
(a),(b),(c),(d),(e), and (f) represent the histograms of the peaks
for varying bins of 2,3,4,5,6 and 7 respectively.

2.3.4. Average Epoch Interval Detection

The non-linear filtered signal contains dominant peaks corre-
sponding to GCIs and other comparable peaks in the weakly
voiced regions. An appropriate threshold needs to be defined
to discriminate the dominant peaks to other comparable peaks.
Hence, a small segment of signal about 50 ms is chosen around
the maximum peak in the voiced segment for detecting the av-
erage epoch interval. All local peaks of the segment are dis-
tributed across a histogram with increasing number of bins.
This is performed since, the exact number of bins to segregate
the primary peaks is not known in prior. The number of bins are
increased linearly with a unit step size starting from two bins
until an empty bin is created. An empty bin essentially signi-
fies the peaks are well distributed across bins and a threshold
between dominant peaks and other peaks can be obtained. The
process of histogram peak distribution is shown in Figure 5.

In Figure 5, the abscissa represents the magnitude of peaks
and the ordinate represents the peaks count. From Figure 5(f)
we can observe that the dominant peaks are segregated to the
right of the histogram and other peaks to the left. A thresh-
old for detecting the average epoch interval (by peak picking
and finding the average peak interval) is searched as the bin
edge traversing the histogram from right to left as shown in
Figure 6(a). The average epoch interval is finalized for the
bin edge whose epoch interval deviation is less than 5%. Fig-
ure 6(b), 6(c), 6(d), and 6(e) shows the epochs detected for
the first four bin edges from the right of the histogram of Fig-
ure 6(a). In Figure 6(e), average epoch interval deviates more
than 5%, so the average epoch interval will be calculated from
Figure 6(d).

2.4. Peak Picking for GCI Detection

The distance between two GCI locations (epoch interval) does
not vary drastically within a voiced segment. The average
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Figure 6: (a) Illustration of candidate GCI locations distributed
over a histogram based on peak amplitudes. The black pointer
in (a) represents the initial threshold. The candidate GCI loca-
tions detected for different thresholds is shown in (b), (c), (d)
and (e) respectively.
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Figure 7: Illustration of the quantitative choice of epoch inter-
val threshold based on sum of sinusoidal harmonics. Figures
(a), (b), (c), (d) and (e) represent the sinusoid of 1,2,3,4, and
5th harmonics of F0 and Figure (f) represents the summation of
all the harmonics of F0.

epoch interval determined in the previous subsection in-terms of
number of samples acts as the minimum distance between two
epochs. In few occasions, there can be slightly higher pitched
regions with epoch interval distance less than obtained thresh-
old. An 85 % of the average epoch interval is used as minimum
distance between two epochs to find the GCI locations within a
voiced regions by peak picking.

A quantitative measure is validated to show that 85 % of the
average epoch interval does not introduce any spurious peaks is
shown in Figure 7. Filtering the signal through RCF restricts
the harmonics in the signal to at most four or five harmonics,
it can be observed in Figure 2(d). The ideal sinusoids of unit
amplitude with five harmonics, sampling frequency of 1000 Hz
and fundamental frequency of 10 Hz (100 samples) is summed
to get a composite signal. The summation of five harmonics re-
peats after every 100 samples or 10 Hz as shown in Figure 7(f).
This justifies the threshold of 85 % of the average epoch in-
terval for reliably detecting the GCI locations in a voiced re-
gions. Even the GCIs in lower pitched regions can be reliably
detected with the obtained threshold since the distance between
two epochs in general will be more than the average epoch du-
ration, indicating lower pitch at the end of voiced segment as
shown in Figure 8. From Figure 8(b), we can observer that the
proposed method is succeeded in reliably detecting the GCI lo-
cations even in weakly voiced regions and irregular periodicity
regions such as creaky voiced regions.

3. Experimental Results
3.1. GCI Ground Truth Creation

The GCIs can be identified as the peaks in the differenced EGG
(DEGG) signal [20]. But, during vowel transitions and other
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Table 1: Performance measure after adding white noise with varying SNR levels.

Proposed Method ZFF SEDREAMS
SNR(dB) -10 -5 0 5 -10 -5 0 5 -10 -5 0 5
IDR(%) 99.07 99.06 99.06 99.07 98.27 98.26 98.26 98.25 98.97 98.93 98.91 98.94

MR(%) 0.55 0.57 0.57 0.56 0.07 0.07 0.07 0.07 0.35 0.37 0.38 0.37

FA(%) 0.38 0.37 0.37 0.37 1.66 1.67 1.67 1.68 0.68 0.7 0.7 0.69
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Figure 8: Illustration of the performance of the proposed GCI
detection method on weakly voiced region and irregular period-
icity regions. Figure (a) represents the speech signal and Figure
(b) represents the detected GCIs as vertical markers.
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Figure 9: Illustration of a voiced segment representing the
vowel transition. Figure (a), (b), (c), (d), and (e) represent the
Speech Signal, RCF Signal, EGG Signal, DEGG Signal, and
GCIs detected over a RCF signal respectively. The Ellipse in
(d) marks the insignificant region in DEGG Signal, even though
the excitation is clear from Speech and RCF Signal.

weakly excited voiced regions, the strength of the excitation
will be weaker compared to other voiced regions resulting in
a weaker peaks in the DEGG signal. Though these changes can
be visually observed in the EGG signal, it is difficult to capture
automatically through DEGG signal. This limitation has stim-
ulated to create a semi-automated GCI Dataset based on EGG
signal. The CMU-ARCTIC dataset [21] which consist of simul-
taneously recorded speech and EGG signals is used for ground
truth creation and evaluation of the proposed method. The EGG
signals are initially mean subtracted to remove the DC bias and
first order difference is computed to obtain the DEGG signal.
The DEGG is thresholded with 1/12th of the maximum peak to
obtain the initial GCI locations. The double peaks are removed
and the missed GCI locations in the weakly voiced and vowel
transition regions are marked manually using Sonic Visualiser,
an audio analysis tool [22].

3.2. Performance Analysis

The performance of the proposed method is evaluated based on
the following measures [17]: Identification Rate (IDR): the per-
centage of glottal cycles for which exactly one GCI is detected.
Miss Rate (MR): the percentage of glottal cycles for which no

Table 2: Performance measures of the proposed, ZFF and SE-
DREAMS methods over CMU-ARTIC Database.

Speaker Method IDR,
(%)

MR
(%)

FA
(%)

BDL
Proposed 99.16 0.35 0.49
ZFF 96.62 0.09 3.29
SEDREAMS 98.44 0.41 1.15

JMK
Proposed 99.15 0.7 0.15
ZFF 99.04 0.09 0.87
SEDREAMS 98.97 0.61 0.42

SLT
Proposed 98.87 0.62 0.51
ZFF 99.16 0.03 0.81
SEDREAMS 99.45 0.07 0.48

GCI is detected. False Alarm Rate (FA): the percentage of glot-
tal cycles for which more than one GCI is detected.

The two prominent state-of-the-art methods for automatic
detection of GCI locations based on accuracy, reliability, and
robustness are ZFF and SEDREAMS. The performance mea-
sures of the proposed method are compared with ZFF and SE-
DREAMS as shown in Table 2. The IDR is better compared to
other methods, since GCI is detected even in low excitation re-
gions. The FA are reduced, because the proposed average pitch
detection method is quite accurate. The MR is found in starting
portion of the voice segment, when the pitch of the speaker is
not yet stabilized. This leads to missing of GCI in the voiced
segment. Further, the white noise is added over the speech sig-
nal at varying SNR levels. The results shown in Table 1 proves
that the proposed method is resistant to noise.

An example of vowel transition regions where DEGG sig-
nificantly fails to capture the GCI locations is shown in Figure 9.
A segment of speech signal, RCF filtered, corresponding EGG,
DEGG and the overlaid GCIs detected by the proposed method
on the speech signal are shown in Figure 9(a), 9(b), 9(c), 9(d)
and 9(e) respectively. From Figure 9(d), it can be observed
that the automatic detection of GCIs from DEGG is very diffi-
cult. But, the GCIs can be easily detected based on the proposed
method as shown in Figure 9(e).

4. Conclusions
A non-parametric and filtering based GCI detection method is
proposed. The speech signal is filter by passing through a pulse
shaping filter. The filtered signal is subjected to non-linear pro-
cessing, non-parametric methods and peak picking approach to
detect the GCIs. The proposed method is compared with the
two state-of-the-art GCI extraction methods. The performance
of the proposed method is evaluated on the ground truth GCI
dataset created from CMU-ARCTIC dataset consisting of both
speech and EGG signals. The experimental results showed that
the proposed method is indeed immune to noise and the ob-
tained results are better than the two state-of-the-art methods.
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