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Abstract

Biodiversity assessment is a central and urgent task, neces-
sary to monitoring the changes to ecological systems and under-
standing the factors which drive these changes. Technological
advances are providing new approaches to monitoring, which
are particularly useful in remote regions. Situated within the
framework of the emerging field of ecoacoustics, there is grow-
ing interest in the possibility of extracting ecological informa-
tion from digital recordings of the acoustic environment. Rather
than focusing on identification of individual species, an increas-
ing number of automated indices attempt to summarise acoustic
activity at the community level, in order to provide a proxy for
biodiversity. Originally designed for speech processing, sinu-
soidal modelling has previously been used as a bioacoustic tool,
for example to detect particular bird species. In this paper, we
demonstrate the use of sinusoidal modelling as a proxy for bird
abundance. Using data from acoustic surveys made during the
breeding season in UK woodland, the number of extracted sinu-
soidal tracks is shown to correlate with estimates of bird abun-
dance made by expert ornithologists listening to the recordings.
We also report ongoing work exploring a new approach to in-
vestigate the composition of calls in spectro-temporal space that
constitutes a promising new method for Ecoaoustic biodiversity
assessment.
Index Terms: soundscape ecology, ecoacoustics, bird song,
partial, sinusoidal, distribution, biodiversity monitoring

1. Introduction
Numerous multilateral initiatives, such as the Convention for
Biological Diversity, aim to reduce the rate of loss of global
biodiversity; traditional methods of biodiversity monitoring and
assessment are impractical over the broad spatial extent and
short time frame required to assess the rapid biodiversity change
currently occurring. Based on the assumption that vocalising
species are valid indicators of biodiversity (e.g. [1]), the emerg-
ing discipline of ecoacoustics [2] promotes the possibility of
rapid acoustic assessment as an effective and efficient diversity
monitoring method.

Ecoacoustics is a theoretical and applied discipline that
considers sound (the acoustic environment, or soundscape, as
a material from which to infer ecological information and in-
vestigates the ecology of populations and communities as well
as the role of sound in animal ecology [3]. Ecoacoustic moni-
toring methods aim to derive a proxy for the biodiversity of the

community from audio recordings made in situ, which can be
an investigative tool for ecological research and a cost-effective
monitoring tool for conservation biology. Based on the assump-
tion that the structure of the acoustic environment reflects the
structure of the population of vocalising animals, various auto-
matic acoustic indices have been proposed. These tend to pro-
vide statistical summaries of digital audio recordings in the time
or frequency domain. In this paper we explore the utility of si-
nusoidal modelling as a tool for ecoacoustic research.

Bird communities are good taxa to study using this method,
because, like human speech, birds produce predominantly
pitched, harmonic sounds, although some calls contain noise-
like components. Sinusoidal modelling is a method developed
for speech analysis that extracts a sum of time-frequency com-
ponents and in previous bioacoustic research it has been suc-
cessfully applied to the identification of specific bird calls [4].
In this paper we develop the use of sinusoidal modelling to sum-
marise the acoustic activity of entire bird communities. Rather
than focusing on detection of particular species, we are con-
cerned with summarising the global distribution of the vocali-
sations in the time-frequency domain; we describe new indices
derived from sinusoidal modelling which may be useful indica-
tors of biodiversity.

This paper is organized as follows: Section 2 contextualises
our work by outlining some related research in ecoacoustics and
sinusoidal modelling. Analysis methods are given in section 3
and our data collection and annotation in section 3.1. Experi-
mental results are presented and discussed in sections 4 and 5.

2. Context
2.1. Theoretical and methodological foundations of ecoa-
coustics

Whereas Bioacoustics focuses on the information transferred
between individuals [5], ecoacoustics considers sound to be a
core component and indicator of ecological processes and con-
siders larger ecological units. Ecoacoustics has ultimate appli-
cation in the analysis and monitoring of ecological communities
and processes, and it is theoretically grounded in terms of the
constraints on the evolution of animal signals. The Acoustic
Adaptation Hypothesis (AAH) [6] assumes that the vocalisa-
tions of signalling species adapt to the specific acoustic prop-
erties of their habitats (ground morphology, vegetation struc-
ture, atmospheric content etc.) as signals evolve to minimise
attenuation and degradation. The Acoustic Niche Hypothesis
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(ANH) [7] adds a sonic component to Hutchinson’s original
concept of ecological niche [8] and is derived from the empir-
ical observation that the calls of species in the same location
tend to show spectro-temporal partitioning such that there is lit-
tle overlap of signals. These processes are assumed to operate
in tandem and to opposite effect: the AAH describes the impact
of environmental degradation of signals; the ANH addresses the
acoustic interference from conspecifics. Critically, both of these
processes predict ecologically meaningful patterns in the global
soundscape, but ecoacoustics currently lacks the tools necessary
to investigate these spectro-temporal structures.

Existing ‘community’ indices [1, 9] are derived from rep-
resentations of the acoustic signal in either the time or fre-
quency domain. We suggest that this limits their potential to
access and assess the acoustic patterns and processes occurring
in time-frequency domain. Some indices analyse the acoustic
environment, or soundscape, in terms of assumed differences
produced by the sources (human-activity versus vocalisations
of non-human species) in time [10] or frequency [11]. Oth-
ers have adapted traditional biodiversity indices to calculate en-
tropy measures in time or frequency domains [12].

2.2. Sinusoidal modelling

Acoustic events which contain harmonic signals (such as
sounds made by birds) can be modelled by a sum of amplitude
and frequency modulated sinusoids. Sinusoidal modelling was
first demonstrated as an automatic analysis tool for the analysis
of human speech in 1986 [13] and enabled a convincing resyn-
thesis of speech waveforms.

The original algorithm consists of first picking peaks from
each frame of a spectrogram, then linking peaks across frames
to form partial tracks. More recent research has focused on re-
ducing computational complexity [14] as well as the localiza-
tion of superposed speech to improve speaker diarisation [15].

Sinusoidal modelling has also been used as a bioacoustic
tool for bird species recognition [16, 17, 18, 19, 20]. However,
most of these approaches focus on few species [4] or analysing
very clean recordings [16, 17, 18]. These approaches also have
a heavy computational cost, for instance by considering all the
spectral peaks at each frame time [13, 17, 19]. In this paper, we
implement a computationally more efficient method and explore
its utility as a community level index for ecoacoustic research.

3. Method
3.1. Data collection and annotation

Our corpus consists of field recordings from an acoustic survey
carried out over the bird breeding season in the UK (May - June
2015). In order to assess the methods in a range of environ-
ments and with a range of avian communities, a stark habitat
gradient was sampled from ancient woodland to farmed land.
The Balmer site consists of large open fields of monoculture
farmed land on the Sussex downs. The Knepp site is rewilded
farmland which has been regenerating for 15 years and com-
prises a series of small areas of grassland surrounded by mature
hedges. The Plashett site is an ancient woodland.

A set of 15 autonomous recording devices were deployed
for 3 consecutive days at each site and the vices were com-
posed of SM2 and SM3 from Wildlife Acoustics1. The devices
were located on a 250 meter grid and scheduled recordings were
made for 1 minute every 15 minutes over the dawn chorus (from

1http://www.wildlifeacoustics.com/

one hour before sunrise until 2.5 hours after). We used record-
ings from only one channel on each device, giving a total of
2025 1-minute mono files.

The full corpus was annotated by an expert ornithologist
who identified species present and made minimum abundance
estimates for each species within each 1 minute file by listening
(repeatedly if necessarily) to each file. 10% of the corpus was
validated by a second ornithologist. Results were compared us-
ing Cohen’s kappa coefficient of inter-rater agreement (0.623).
This gives us baseline values for the number of species (N0)
and a proxy for the total number of individuals (NN ). Estima-
tion of the number of individuals is difficult from recordings as
we cannot know if two different vocalizations were produced by
the same animal. An abundance proxy was achieved by record-
ing the maximum number of simultaneous vocalisations heard
for each species. The abundance proxy, NN , therefore corre-
sponds to the minimum number of individuals that vocalised
during the recording.

3.2. Partial tracking

Our method develops the partial tracking methods used for su-
perposed speech detection [14, 15] and comprises the same two
step algorithm: peak selection and track formation.

3.2.1. Peak Selection

Peaks are picked from a spectrogram, created by a Fast Fourier
Transform2 over each frame. To be robust to noises from
technophony, we focus on the frequency range most widely
used by birds, between 1.6 and 8 kHz. In this bandwidth, we
select peaks above the amplitude threshold ampmin. As record-
ings have been made in different sonic environments, the signal-
to-noise ratio can vary dramatically across files. We therefore
use an adaptive threshold set at the average amplitude of the
spectrogram plus 10 dB (set experimentally). Finally, we ex-
tract the 5 peaks with highest amplitude from each frame, de-
scribed by a time, frequency, amplitude triple.

Figure 1: Linked peaks. In this example, only one on two cou-
ple of peaks from consecutive time steps is linked to form a
track (adapted from [21]).

3.2.2. Track Formation

In the second step, the sinusoidal segments are built by linking
the selected peaks. The distance between each peak pi of the

2Sampling Rate: 48 kHz; Window size: 32 ms; Overlap: 16 ms;
FFT size: 2048 bins (including zero-padding)
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frame t, defined by a couple of frequency-amplitude, and each
peak pj on an adjacent frame t + 1, is calculated. If the dis-
tance di,j is less than a threshold, then the two peaks are linked
(see [15] for more details about the distance).

Figure 1 illustrates the distance metric applied to two dif-
ferent sets of peaks as over time. Peaks on the right are linked
to form part of a track as the frequency-amplitude distance be-
tween them falls below the threshold; the distance between
peaks on the left exceeds this threshold and no track is cre-
ated. By linking peaks into tracks we assume they originate
from the same source as it evolves over time. To further ensure
meaningful tracks, we drop tracks less than a certain threshold,
durationmin, set here to 10 frames.

3.3. New Indices based on Sinusoidal Modelling

The extracted tracks are assumed to reflect the vocalization of
birds. In general bird song has less complex partial structure
than human speech (i.e. the number of partial tracks approxi-
mates the number of vocalisations). However, close groups of
partials can appear in noisy parts such as wind or complex bird
songs.

In order to mitigate bias of these clusters and to begin
to explore time-frequency distribution of calls which other in-
dices are insensitive to, we calculate measures of global time-
frequency distribution of the tracked peaks as well as the to-
tal number of tracks nt. qo and the concentration index (CI)
are derived from a spatial analysis method [22] which was de-
veloped to describe the geographic distribution of churches, by
imposing a grid of quadrats on a given area.

• qo describes the patchiness of peak distribution across
quadrats. The time-frequency zone of each frame is di-
vided into quadrats. qo is the proportion of quadrats oc-
cupied by at least one peak.

• CI, the Concentration Index [22] describe the evenness
of the distribution of peaks across quadrats. This is cal-
culated as the ratio between the average distribution of
peaks (m) and its variance s2 as shown in Equation 1.
The CI approaches 1 for a random distribution, and in-
creases as peaks are clustered in concentrated areas.

CI = s2/m (1)

• nt, the number of tracks is computed with the constraint
that no more than two simultaneous tracks are counted.
This is done in order to avoid tracks coming from noise
and complex bird songs, that are not relevant for the in-
dividual count. It is therefore a conservative estimate of
the number of vocalisations.

3.4. Acoustic indices

In order to compare our results with the state-of-the-art indices
used in ecoacoustic research, we compute the most commonly
used community level diversity indices:

• Acoustic Entropy Index (H) [23], the Shannon entropy
index calculated on the average frequency bins.

• Acoustic Eveness Index (AEI) [24], based on the propor-
tion of bins above a threshold.

• Acoustic Complexity Index (ACI) [10], that express the
temporal variations of amplitude,

• and Bioacoustic Index (BI) [25] which captures the area
under the mean spectrum, typically within the assumed
range of biophony.

These indices are currently available from the seewave3 and
soundecology4 toolboxes. We computed them with our own
python code5 that includes a high pass filter at 300Hz to remove
low frequency noise from traffic and other anthrophony.

3.5. Experiment

Thresholds for sinusoidal modelling were established experi-
mentally on a small sample of files6; all indices were then com-
puted on the whole corpus of 2025 files. In order to remove
bias from wind, 344 files manually annotated as windy were
dropped from the CI calculations. We used 720 quadtrats of
1s × 530Hz. Our python code is available online with some
example files7.

4. Results
Figure 2 shows the output of our sinusoidal modelling for sam-
ples across habitat types and with different species diversity and
abundance values. We can observe a low frequency noise that
is not captured by the sinusoidal modelling (e.g. planes, road).

4.1. Biodiversity indices

The correlation between the acoustic biodviersity indices with
annotated values of number of species N0 and abundance NN
was tested with Spearman’s rank correlation coefficient (values
near 0 suggest no correlation, values near 1 or -1 a positive or
negative rank correlation). As shown in table 1, our new indices
nt and q0 show a stronger positive correlation with human mea-
sures of biodiversity than any of the existing indices, which vary
in strength and direction. The CI shows low correlation with
both measures of biodiversity.

H AEI ACI BI nt qo CI
N0 -0.49 0.64 0.54 0.62 0.69 0.67 0.19
NN -0.54 0.68 0.56 0.66 0.75 0.71 0.24

Table 1: Spearman’s Rank Correlation coefficients for auto-
matic indices against annotated values of number of species N0
and total abundance NN .

4.2. Concentration Index

To investigate the CI further we explored the mean values for
each site in table 2. The mean number of species (N0) and in-
dividuals (NN ) is lowest in the farmed site, Balmer, highest
in the regenerating site, Knepp and at intermediate values for
Plashett, the ancient woodland. The number of tracks, nt fol-
lows this order, as also established by the positive correlation
coefficients. In contrast the CI is lowest for Balmer and highest
in Plashett, suggesting that this summary of the distribution of
peaks is accessing other aspects of the acoustic environment.

3http://rug.mnhn.fr/seewave/
4http://ljvillanueva.github.io/soundecology/
5http://tinyurl.com/jrs3whf
6In comparison to speech analysis, the main difference is the appli-

cation of relaxed condition on frequency with a higher threshold cf to
allow the tracking of bird songs with high frequency variation.

7http://tinyurl.com/hnmm6sn
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(a) Balmer - 21 June - 3:17 - microphone #1
N0: 1, NN: 1, nt = 28, CI = 11.2, qo = 0.07

(b) Plashett - 3 June - 6:45 - microphone #11
N0: 6, NN: 10, nt = 134, CI = 50.7, qo = 0.39

(c) Knepp - 10 May - 4:45 - microphone #10
N0: 6, NN: 10, nt = 216, CI = 27.7, qo = 0.47

(d) Knepp - 11 May - 5:45 - microphone #11
N0: 12, NN: 18, nt = 174, CI = 25.4, qo = 0.41

Figure 2: Spectrograms (0 to 6 kHz) for four 1 minute files
across three habitat types. Sinusoidal models are superimposed
on the spectrograms in black.

5. Discussion
These results suggest that sinusoidal modelling holds promise
as a tool for ecoacoustic research in a number of ways. Ba-
sic statistical information about the number and distribution of
partials may serve as an effective proxy for the number of vo-
calisations, and hence as abundance. Moreover, as a resynthe-
sis method, it enables aural and algorithmic analyses of animal
vocalisations separated from background noise. Although this
may run counter to the ethos of soundscape ecology, this is a
useful utility for the development and testing of automated in-
dices.

5.1. Acoustic indices derived from sinusoidal modelling

Basic summaries of the extracted partials (nt and qo) were
shown to correlate more strongly with abundance counts than
existing acoustic indices. It is likely that the tracked partials are
representative of individual vocalisations, rather than individual
birds and this deserves further research.

The development of new indices for use as proxies in bio-
diversity assessment requires solid baseline data to validate

against. In this context, a major issue is the difficulty to ef-
fectively estimate the number of individuals. For example in
figure 2, the number of individuals in the noisy file (c) could
be higher than in the file (b). Human annotation is inevitably
sensitive to a number of factors that are difficult to control, such
as number of listens, audio level, interpersonal differences in
attention, and perceptual acuity.

5.2. Time frequency distribution

To begin to explore differences in time-frequency distribution,
we used a Concentration Index derived from spatial analysis. CI
is not associated with the estimated number of species or total
abundance, and therefore obtains a poor correlation score with
the values N0 and NN (table 1). The difference of distribution
can be observed for example in the figure 2 (b) and (c), where
the number of estimated vocalizations are similar. The distribu-
tion of tracks, as well as the distribution of the energy, seems
sparser in the Plashett file. There could be a number of reasons
for this including environmental, species and behavioural dif-
ferences. For example, the denser woodland of Plashett may at-
tenuate the call of distant birds, that are less filtered in the more
open space of Knepp. So the acoustic community in Knepp is
effectively sampled from a wider area.

The study of the distribution of calls echoes the Acoustic
Niche Hypothesis [7] (ANH), that suggest the time-frequency
distribution of calls is optimal to facilitate the inter- or intra-
species communication. Our primary results on that topic sug-
gest that the vocalization could be more concentrated in the an-
cient woodland of Plashett, than in the Knepp regenerative land.
The distribution of the vocalization could perhaps reflect the
structure of vegetation at the site, which may be more random
in a regenerative land, and more structured in the ancient wood-
land. Further development with ecoacoustic metrics may bring
more objective results in order to further assess these theories.

Balmer Knepp Plashett
N0 2.8 6.2 4.9
NN 3.1 7.9 6.1
nt 47.3 148.3 125.5
CI 27 39 42

Table 2: Mean values of N0, NN , nt and CI for three sites.

6. Conclusion
In this paper, we presented an application of sinusoidal mod-
elling for ecoacoustics. Our results, based on the number of
tracks and the distribution of the peaks, show a 70% ranked
correlation with the number of species, a stronger correlation
than existing ecoacoustic indices. Further research is needed
to establish the ecological relevance of CI, but the development
of indices which access two dimensional time-frequency hold
promise for the investigation of the distribution of bird calls and
ecological hypotheses.
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