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Abstract
Models for automatic speech recognition (ASR) hold detailed
information about spectral and spectro-temporal characteristics
of clean speech signals. Using these models for speech en-
hancement is desirable and has been the target of past research
efforts. In such model-based speech enhancement systems, a
powerful ASR is imperative. To increase the recognition rates
especially in low-SNR conditions, we suggest the use of the ad-
ditional visual modality, which is mostly unaffected by degrada-
tions in the acoustic channel. An optimal integration of acoustic
and visual information is achievable by joint inference in both
modalities within the turbo-decoding framework. Thus combin-
ing turbo-decoding with Twin-HMMs for speech enhancement,
notable improvements can be achieved, not only in terms of in-
strumental estimates of speech quality, but also in actual speech
intelligibility. This is verified through listening tests, which
show that in highly challenging noise conditions, average hu-
man recognition accuracy can be improved from 64% without
signal processing to 80% when using the presented architecture.
Index Terms: audio-visual speech enhancement, turbo decod-
ing, twin-HMM

1. Introduction
The Turbo-Twin-HMM is a new model for audio-visual speech
enhancement. It is a crossover between the Twin-HMM [1] for
speech synthesis and the turbo principle [2] for audio-visual
speech decoding. Audio-visual speech enhancement uses the
additional visual modality to recover speech information from
a noise-corrupted audio channel. A good audio recognizer in
combination with a decent lip-reading system clearly exceeds
the performance of audio-only methods [3].

The Twin-HMM for audio-visual speech enhancement [4]
uses the best audio state sequence through a coupled HMM [5]
to find an estimate of the clean speech signal. If the decoder
accidentally selects an incorrect path, the synthesized signal
will resemble a noise free but most certainly wrong-sounding
phoneme. Instead of the coupled HMM decoder in the follow-
ing we use the turbo decoder to calculate the required state pos-
teriors. The turbo principle for audio-visual speech decoding
uses all available audio and video sequence information over
multiple iterations for the recognition and is therefore advanta-
geous compared to the left-right Viterbi style decoding of the
coupled HMM. To alleviate the problem of hard decisions in
the decoder, we propose a framewise mixture of all HMM out-
put models, weighted by their state posteriors. The idea is that
a wrong decision by the decoder will be partially compensated
by the outputs of other models.

This work was partially supported by the EU FET grant
TWO!EARS (ICT-618075).

Although this paper describes the pure synthesis of noise-
free audio signals from a parametric audio-visual speech model,
we are not limited to this application. If we treat acoustic ob-
servations as random variables and combine them with expec-
tations and uncertainties [6] from the parametric model we can
optimally combine the input and the modeled spectrum in an
MMSE estimate [1].

In the following, we will give an overview of existing work
on audio-visual speech enhancement in Section 2. Sections 3
and 4 review the Twin-HMM for speech enhancement and the
turbo principle for audio-visual speech recognition. In Sec-
tion 5 we introduce the new Turbo-Twin-HMM architecture for
speech enhancement. Section 6 describes our experiments with
the GRID database. In Sections 7 and 8 we give results for var-
ious instrumental speech quality measures and for human lis-
tening tests. The intelligibility improvements of the new Turbo-
Twin-HMM are discussed in Section 9 before we conclude in
Section 10.

2. Audio-Visual Speech Enhancement
Two basic difficulties arise in the application of ASR knowl-
edge to speech enhancement. On the one hand, ASR models
of speech typically work in feature domains that are highly dis-
criminative for phonetic classes, and that therefore attempt to
minimize the influence of the speaker traits, room characteris-
tics, and any prosody. This makes ASR features such as MFCCs
insufficiently descriptive of the speaker identity and speaking
style for the purpose of speech enhancement.

On the other hand, ASR performance degrades rather
quickly, once the acoustic environment is degraded by noise
or reverberation, which implies that any ASR-based speech en-
hancement is also bound to deteriorate in noisy conditions.

These two issues have both been addressed in previous
works. To compensate for the fact that ASR models do not
have sufficient speaker identity and prosodic cues, mainly two
approaches have been attempted: inventory-based [7, 8, 9] and
Twin-HMM-based speech enhancement [4]. Regarding the per-
formance in noisy or otherwise distorted conditions, a range of
different approaches exists. The use of audio-visual data has
been investigated in [1, 4]. Greater ASR robustness can also
be achieved using observation uncertainties [10, 11] or through
parallel model combination [12].

In the following, we will present a new approach that, like
[4], is based on audio-visual recognition, using the idea of a
Twin-HMM. However, in contrast to earlier work, the audio-
visual decoder will now be based on the turbo principle instead
of coupled HMMs, which has shown superior performance in,
e.g., [13, 14] and we will investigate this new model architec-
ture — the Turbo-Twin HMM — in terms of three instrumental
measures, the PESQ, STOI and segmental SNR. In addition, we
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will show listening test results that indicate large improvements
in speech intelligibility for negative SNRs, which imply that our
introduced model is capable of notably enhancing the actual in-
telligibility of noisy speech.

3. Twin-HMM
The Twin-HMM assigns two different output density functions
(ODFs) to each HMM state. The first output density function
corresponds to the usual ODF insofar as it is used to find the
most likely state sequence within a recognition architecture,
and is hence referred to as REC, because it models the system’s
recognition features.

The second set of features, the synthesis features, or SYN
features, models the clean amplitude spectrum of speech and is
hence useful for speech enhancement or synthesis. In the fol-
lowing, this second set of distributions will be used to estimate
the clean amplitude spectrum of speech based on a recognized
state sequence obtained from turbo decoding.

With the Twin-HMM it is hence possible to use one set of
features and ODFs, e.g. MFCCs based on multicondition train-
ing, that are optimized for maximum phonetic discriminance
and best recognition results, and another completely different
set of features and ODFs that are most suitable to estimate the
clean speech amplitude spectrum. In this way, the Twin-HMM
provides a statistical model that is suitably structured to de-
scribe the co-evolution of two streams of data – one for recog-
nition and the other for speech processing.

recognition model

synthesis output density functions

...

features

output

Figure 1: Concept of the Twin-HMM for model-based speech
enhancement. A conventional HMM in the upper part is aug-
mented by an additional set of ODFs for speech synthesis or
reconstruction.

4. Turbo Decoding
Turbo decoding (TD) has been developed for convolutional er-
ror correction and channel decoding in digital transmission sys-
tems [15, 16]. Recently, TD was introduced into the field of
ASR in order to perform multi-modal recognition [2, 13, 14].

TD is based on the iterative exchange of information, de-
duced from state posteriors, between different decoders. This
extra information, ga and gv in Fig. 2, is used like a prior to
modify the observation likelihoods ba and bv for the calculation
of state posteriors in the forward-backward algorithm (FBA).
The modified audio and video likelihoods for the respective ob-
servations oa and ov are

b̃a(oa|qa) = ba(oa|qa) · ga(qa)λT λP , (1)

b̃v(ov|qv) = bv(ov|qv) · gv(qv)(1−λT )λP , (2)

in which the constant λP balances the likelihoods and prior
probabilities and λT is used like a conventional audio stream
weight. For an extended discussion of adaptive stream weight-
ing for coupled HMMs and TD, see [17, 18].

audio feature sequence

Tva

video feature sequence

gv

γ̇v

γ̇a

ga

Tav

likelihood computation likelihood computation

γ̃a

ba bv

posterior computation posterior computation

Figure 2: Turbo decoding for AVSR. The left column is a con-
ventional audio-only ASR system. A decoder for the second
modality (video) is added and the extrinsic probabilities γ̇a and
γ̇v are exchanged iteratively between the two decoders.

From the FBA, we obtain new state posteriors γ̃, which sub-
sume the likelihood, the prior probability and the extrinsic prob-
ability [13]. To find the extrinsic probability γ̇(q(t)) for state q
and frame t, we have to remove all excess information via

γ̇
(
q(t)

)
∝

γ̃
(
q(t)

)
b
(
o(t)|q(t)

)
· g
(
q(t)

) . (3)

The extrinsic probabilities γ̇ are mapped to the other decoder’s
state space by a linear transformation Tva or Tav respectively.

ga = Tva γ̇v audio← video (4)
gv = Tav γ̇a video← audio (5)

In our experiments the process of FBA followed by the deduc-
tion of extrinsic probabilities and their transfer to the corre-
sponding other state space is iterated 4 times. In the first TD
iteration, a flat prior ga(qa) = 1, ∀qa is used for the audio
states. After the final iteration TD finishes with the audio pos-
teriors γ̃a.

5. Turbo-Twin-HMM
The Turbo-Twin-HMM joins the turbo principle for multimodal
speech decoding and the Twin-HMM for speech reconstruction.
Joint inference in the audio and video sequence of an utterance
is done via turbo decoding. After a few iterations we obtain au-
dio state posteriors as a prerequisite for the clean speech estima-
tion. To find an estimate of the clean speech, we have attached
an additional set of SYN output density functions to all states
of the audio model according to the Twin-HMM principle.

Here we compare two ways of synthesis, all-path (AP) and
best-path (BP) synthesis. For AP synthesis, we calculate the
minimum-mean square error estimate of the clean speech am-
plitude spectrum x̂AP(t) as

E
(
x(t)|o(t)

)
=

N∑
i=1

p
(
q(t) = i|o(t)

)
E
(
x(t)|q(t) = i

)
. (6)

This corresponds to a sum of synthesis ODF means µi over
all states i weighted by the corresponding audio state posterior
γ̃a(i, t) (see Fig. 2) for frame index t,

x̂AP(t) =

N∑
i=1

γ̃a(i, t) µi. (7)

For BP synthesis, instead of a weighted sum, we use the
most probable state i∗(t) for each frame t, to compute the clean
speech signal estimate

x̂BP(t) = µi∗(t). (8)
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Table 1: Instrumental measures for the noisy data, the audio-only log-MMSE speech enhancement for reference and four variants of
Turbo-Twin-HMM speech enhancement. Two different synthesis feature extractions E1 and E2 in combination with two different clean
speech estimation strategies AP and BP for a total of 588 test files per SNR are shown.

segmental SNR PESQ STOI
SNR 0 dB -3 dB -6 dB -9 dB 0 dB -3 dB -6 dB -9 dB 0 dB -3 dB -6 dB -9 dB

noisy 1.79 0.40 -1.37 -2.10 1.95 1.69 1.46 1.21 3.59 2.35 0.35 -0.41
log-MMSE 2.32 0.59 -0.56 -1.53 1.90 1.58 1.36 1.06 0.66 0.57 0.49 0.41

E1AP 1.30 0.72 0.09 -0.59 2.11 2.02 1.94 1.83 0.68 0.65 0.61 0.57
E1BP 1.30 0.73 0.12 -0.55 2.02 1.92 1.82 1.71 0.66 0.63 0.59 0.54
E2AP 1.15 0.64 0.04 -0.57 2.08 2.01 1.91 1.82 0.70 0.68 0.64 0.59
E2BP 1.11 0.63 0.05 -0.54 1.99 1.91 1.80 1.68 0.67 0.65 0.60 0.56

We find i∗(t) via a best path search in the state posterior matrix
γ̃ constrained by the transition structure of the audio model. BP
synthesis is done by using only ODFs that belong to states on
the best path. Thus, in every frame only a single expectation
with weight one is used to calculate an estimate of the clean
speech signal, an approach that is more efficient than the MMSE
estimator above, albeit at the cost of making a hard decision on
the state identity before synthesis.

6. Experimental Setup
We used the GRID corpus [19] as our audio-visual database.
In order to obtain noisy mixtures, for each utterance a noise-
only segment, with a length equal to that of the clean utterance,
was randomly selected from the binaural CHiME noise record-
ings [20], which contain realistic household noises like steps,
washing machines, music, etc., and are hence very challenging
due their variety and non-stationarity. To eliminate some low-
frequency hum and baseline drift, the noise signal was filtered
with an 8-th order Butterworth high-pass filter with cut-off fre-
quency 70Hz, and scaled to yield the desired SNR according
to

SNR = 10 log10

∑K−1
k=0 s1(k)

2 + s2(k)
2∑K−1

k=0 n1(k)2 + n2(k)2
. (9)

Here, k denotes the sample index. The mean was subtracted
from the two channels of the time domain input signals, s1, s2,
and noise signals n1 and n2 before the SNR computation.

The signals were then pre-enhanced using log-MMSE
speech estimators according to [21] with beamforming-based
noise estimates. Two versions of speech enhancement were
compared: On the one hand, we used the log-MMSE estimator
given in the source code of Loizou as distributed with [22] in
the original parametrization, and on the other hand, we carried
out a log-MMSE speech enhancement as described in [23]. The
first setup leads to a very high perceptual quality of enhanced
speech, whereas the second setup was optimized for best speech
recognition performance in the CHiME challenge, where it was
first used in [23]. In the following, we refer to the first enhance-
ment by E1, and to the second by E2.

Finally, REC and SYN features were extracted for the Twin-
HMM. For REC and SYN features, the framing was chosen
equally, so as to ensure temporal consistency. The frame size
and frame shift were 20 ms and 10 ms, respectively, and a Ham-
ming window function was applied before carrying out the FFT.
The magnitude of this FFT was used as SYN features. In a
second step, for the REC features, 13 MFCC coefficients and
their first and second time derivative were computed from the
STSA features, leading to 39-dimensional REC feature vectors.

Video features were extracted exactly as in [14]. Recognition
results for these features with our turbo decoding approach and
λP = 0.1 are shown in Table 2. λT is chosen SNR-dependently
between 0.1 and 0.4.

Table 2: Comparison of the recognition accuracy in percent cor-
rect for REC-feature variants E1 (optimized for minimal distor-
tion during synthesis) and E2 (optimized for best recognition
results).

Method -9 dB -6 dB -3 dB 0 dB ∞ dB

E1 87.95% 90.27% 91.13% 93.38% 97.15%
E2 89.67% 91.81% 93.98% 95.34% 98.18%

7. Instrumental Measures
For the evaluation of the speech enhancement system, a range of
instrumental quality measures has been applied. We have com-
puted the PESQ measure [24], the segmental SNR, cf. page 45
of [25], was used in the implementation provided in [22], and
the short-term objective intelligibility measure (STOI) was used
as described in [26]. Mean values of the considered instrumen-
tal quality measures for all methods are shown in Table 1.

8. Speech Intelligibility
We have measured the intelligibility of the enhanced speech
signals by means of a large-scale listening experiment, using
crowd-sourcing tests at CrowdFlower [27]. Each test partici-
pant (referred to as a contributor in the crowd-sourcing jargon)
was asked to transcribe a set of 14 audio signals, covering differ-
ent signal processing methods, i.e., log-MMSE signal enhance-
ment, E2BP, E2AP, and E1AP as well as an unprocessed noisy
signal. For this purpose, we created test sets for 4 different SNR
conditions (i.e., -9 dB, -6 dB, -3 dB, and 0 dB), where the SNR
was the same for all signals within a given test set. To prevent
memorization, we ensured that the same utterance text was only
utilized once within a given test set.

Each test set also contained 4 clean utterances that were
used for quality control1. Only those participants who correctly
transcribed at least 75 % of the clean utterances were considered
for the experiment.

The transcriptions were recorded using a multiple-choice
approach by providing pre-filled selection forms, i.e., radio but-
tons and drop down menus. Each contributor was allowed to

1Quality control can be helpful to identify cheaters (i.e., contribu-
tors that are not working fairly) and to exclude contributors that are not
sufficiently qualified for a given task (e.g., due to language deficits).
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Figure 3: Listening test results. Each score is based on the average results of approximately 260 unique utterances.

participate multiple times but was restricted to solve at most 6
tests with 14 utterances each. We have collected the responses
from 690 individual participants, considering only those par-
ticipants that have passed and maintained the quality control
requirements during the test. Overall, we gathered 27.118 tran-
scribed utterances.

Figure 3 shows the results of the listening experiment in
terms of the average word accuracy for varying SNRs. There,
we can see that the unprocessed noisy signals give a higher
word accuracy than the log-MMSE-processed signals, indicat-
ing that the latter does not improve the intelligibility of the
signals, which is consistent with many previous findings [28].
In contrast, for the proposed approach all variants (i.e., E2BP,
E2AP, and E1AP) show improvements in word accuracy for
each SNR condition, compared both to the noisy and to the
log-MMSE-processed signals. As expected, the results indi-
cate that the Turbo-Twin-HMM is most effective at low SNR
conditions. The highest relative performance improvement is
observed for E2BP at -9 dB, yielding a relative improvement of
the word accuracy of 53.79 % and 80.16 % compared to noisy
and log-MMSE-enhanced speech, respectively.

The average results across all conditions are shown in Ta-
ble 3, where an improvement in intelligibility from 64.27% to
80.10% is shown, comparing the noisy signal with the best-
performing Turbo-Twin-HMM version, i.e. the E2BP setup.

Table 3: Listening test results showing the word accuracy aver-
aged over all SNRs. Each score is based on 1037 utterances.

Noisy log-MMSE E1AP E2AP E2BP

64.27 % 57.09 % 74.30 % 78.78 % 80.10 %

9. Discussion
When comparing the results of the instrumental quality mea-
sures and those of the listening tests, it is of note that high
values in the instrumental measures do not correspond to high
values of intelligibility. Whereas at high SNRs, noisy or log-
MMSE-enhanced speech leads to good values especially of the
STOI measure, the Turbo-Twin-HMM results are the most in-
telligible signals in all cases. This seeming discrepancy is, how-
ever, not so surprising if one considers the fact that our ap-
proach actually synthesizes the speech spectra from a clean-
speech model. While this does introduce greater changes in the
signal form, and hence deviations from the clean-speech ref-
erence, and thus may negatively impact intelligibility estimates

such as the STOI measure, indeed the signal does gain in intelli-
gibility, as missing acoustic information is replaced by means of
the available audio-visual speech model. This is most apparent
in the results of the E2BP approach, which improves intelligi-
bility from 46.6% to 74.8% at -9dB, and still yields considerable
improvements of intelligibility at 0dB SNR, going from 77.2%
to 84.6%.

Another point of interest is the comparison between the two
log-MMSE pre-enhancement settings. Whereas the setting E1,
optimized for human listening, typically leads to better PESQ
and segmental-SNR values, due to our ASR-model-based ap-
proach, the best listening test results are still attained using E2,
the approach optimized for automatic speech recognition per-
formance.

Among the two tested fusion approaches, best-path synthe-
sis is the clear favorite in terms of intelligibility, even though the
MMSE estimate employed in AP is typically superior regard-
ing instrumental measures. Again, this points to an interesting
fact—as noted in [29], the use of reference-based methods for
estimating speech intelligibility is questionable in many model-
based speech enhancement schemes, and should be replaced by
listening tests, or, ideally, by yet-to-be-developed intelligibil-
ity assessment approaches based on more complex models of
speech.

10. Conclusions
We have introduced the Turbo-Twin-HMM, a new model for
audio-visual speech enhancement. Combining the capability of
the Twin-HMM for multi-modal speech enhancement with the
recognition accuracy of turbo decoding, the approach has been
successful in clearly improving speech intelligibility in highly
noisy environments. Its use is most effective at strong negative
SNRs, where, based on the information of the video channel,
missing data in the acoustic domain can actually be recovered
by utilizing a state-dependent model of the clean speech spectral
amplitudes. The efficacy of the approach has been demonstrated
not only in terms of instrumental measures of speech quality and
intelligibility, but also by large-scale listening tests that confirm
the expected notable improvements of intelligibility.

Whereas here, we have concentrated on a proof-of-concept
system based on the GRID corpus, in future work, it will be
interesting to apply this framework for large vocabularies and
to extend its applications to de-reverberation and source separa-
tion, with the goal of employing it, e.g. in mobile devices, for
video-assisted speech enhancement.
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