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Abstract
This paper investigates to what extent breathing can be used
as a cue to turn-taking behaviour. The paper improves on ex-
isting accounts by considering all possible transitions between
speaker states (silent, speaking, backchanneling) and by not re-
lying on global speaker models. Instead, all features (including
breathing range and resting expiratory level) are estimated in
an incremental fashion using the left-hand context. We identify
several inhalatory features relevant to turn-management, and as-
sess the fit of models with these features as predictors of turn-
taking behaviour.
Index Terms: breathing, multiparty conversation, turn-taking
cues, respiratory inductance plethysmography

1. Introduction
The proposition that breathing fulfils a communicative function
in conversation can be most commonly found in the Conver-
sation Analytical literature. Schegloff [1, pp. 105-106] formu-
lates the idea succinctly: “It is tempting to dismiss breathing as
merely a physiological prerequisite to talking, but this distracts
from a variety of orderly practices which can inform the ‘do-
ing of breathing’ in ways which achieve differing outcomes for
the turn’s construction and hearing. [. . . ] The point here is that
breathings - whether in or out - are practices; they can be done
in various modalities [. . . ]; they can be placed variously in the
developing structure of the TCU [Turn Constructional Unit].”
He then goes on to present some evidence of how respiration is
used as turn-taking and turn-yielding cues (or, in his lingo, as
pre-beginnings and post-completions).

Working in the same research paradigm, Local and Kelly
[2] differentiated between trail-off and holding silences. The
former are accompanied by an audible exhalation and mark turn
yielding, the latter coincide with glottal closure and are a marker
of turn-keeping.

Quantitative investigations of the interaction between
breathing and turn-taking are rare. McFarland [3] analysed
breathing in scripted spontaneous dialogues and found that lis-
tener’s exhalations tended to increase in duration before speaker
change. He also noted an increase in inhalation depth directly
before turn-onset compared to the following inhalations in the
turn, but that effect was only discernible in the scripted dia-
logue.

More recently, Rochet-Capellan et al. [4, 5] analysed the
interaction between respiration and different turn configura-
tions and found evidence of temporal compression during turn-
keeping: inhalations themselves as well as the lag between
speech offset and onset of the next inhalation, and between in-
halation offset and speech onset were all shorter. This finding
was interpreted as evidence of trying to minimise pause dura-
tion and consequently the risk of loosing the turn. They also

found that unsuccessful interruptions (butting-ins) were shorter
and less strongly tied to the onset of the exhalation. Finally,
the temporal coordination of pre-speech inhalation onset to in-
terlocutors breathing cycle depended on turn type: interruptions
showed the most consistent (and earlier) peak towards the end of
the other speaker’s exhalation than smooth turn switches. Over-
all, half of the turns coincided with a single cycle and only 20%
consisted of more than three cycles.

The topic has been addressed most comprehensively by
Ishii et al. [6] using recordings of Japanese four-party conver-
sations on a pre-assigned topic. The authors found significant
differences between turn-taking and turn-keeping. Specifically,
inhalations in turn-keeping were shorter, steeper and followed
speech offset sooner than in turn-taking. Additionally, the next
interpausal unit (IPU) followed the inhalation sooner when con-
tinuing after a turn-hold. No differences were found in ampli-
tude, minimum and maximum lung volume levels. Finally, the
amplitude and the peak volume of the inhalation were higher
in next speakers than in the other listeners. While their paper
was a noteworthy attempt at identifying respiratory turn-taking
cues, the procedure employed involved performing a separate
test for each feature considered thus possibly failing to detect
the cumulative effects of minor changes in multiple predictors
[7] and greatly reducing statistical power. This becomes even
more troublesome given that the authors interpreted p-values
between 0.05 and 0.1 as “significant trends”. In addition, the
variability in the data was greatly reduced by only considering
speaker means. The paper also made certain assumptions about
turn-taking which are not necessarily true. Most notably, predic-
tion of turn initiation was only done in the vicinity of previous
speaker’s turn. This assumes, on the one hand, that the end-of-
turn can be reliably predicted itself and, on the other hand, that
contenders to the floor do not initiate speech at other locations
within the turn. However, neither of these assumptions is un-
controversial. Last but not least, claims of predictive inference
were complicated by the fact the some of the features were nor-
malised by speaker’s global parameters rendering the approach
useless for online processing.

In a follow-up study [8], the authors used gaze- and
respiration-related features to predict speaker change in multi-
party conversations. Overall, classifiers using both information
types performed better than gaze and respiration features sep-
arately. Nevertheless, gaze on its own was better at predicting
whether there would be a speaker change or a turn hold and res-
piration was better at predicting who the next speaker would be
in case of a speaker change.

Finally, Aare et al. [9] compared the inhalation amplitudes
of the first two inhalations in single turns and found the turn
initiating inhalation to be greater in amplitude.

The goal of the present paper is to provide a comprehensive
account of respiration as a cue to turn-management in sponta-
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neous multiparty conversation. Specifically, we want to identify
the inhalatory features which most reliably predict whether an
upcoming respiratory cycle is going to coincide with speech,
with a backchannel or with no vocal activity from the speaker.
Importantly, when estimating the features, we rely solely on di-
alogue history and do not require access to a global speaker
model. To ensure maximal statistical power, we use a multivari-
able modelling approach.

2. Method
The study was based on the same material used in [10]. The
description of the recording setup and data pre-processing is
repeated below for completeness.

Eight recordings of three-party conversations in Swedish
(with average length of 22:56 min, SD = 1:22 min) were used
in the present study. In one half of the dialogues two of the
speakers were males and in the other half two of the speakers
were females. The topic and the course of interaction were not
restricted in any way. All participants were native speakers of
Swedish, with a median age of 25 (IQR = 4). With the excep-
tion of two conversations, all speakers knew each other prior to
the recording.

Each participant’s breathing was recorded using Respira-
tory Inductance Plethysmography, which measures changes in
cross-sectional area of the rib cage and the abdomen by means
of two elastic belts worn at the level of the armpits and the navel.
Before the recording the individual contributions of each belt to
the total lung volume change were assessed using the isovol-
ume manoeuvre [11]. Participants were recorded standing at a
bar table (105 cm in height), and were asked to avoid large torso
movements, which would otherwise distort the respiratory trace.

The signal from the belts was sampled by RespTrack
processors, designed and built at Stockholm University, and
captured by PowerLab and LabChart (ADInstruments). The
summed signal from the two belts corresponding to the total
lung volume change was captured as well.

Cycles in the summed respiratory signal were identified au-
tomatically by replacing each sample value with a z-score cal-
culated within a moving 10-second window, and locating sig-
nal maxima and minima which differed by at least 1 standard
deviation in amplitude. The result was subsequently compared
with manually corrected segmentations. Annotation errors (in-
halations coinciding with speech), most likely due to large body
movements were excluded from the analysis.

Laughter was detected automatically using a version of the
algorithm described by [12] based on z-scored velocity and ac-
celeration profiles. Manual inspection of the output of the laugh-
ter detector indicated that the method resulted in some false pos-
itives. However, as we were only using this technique for data
filtering, this simply resulted in a smaller analysed sample.

Speech was collected using close-talking condenser micro-
phones (Sennheiser HSP 4) and routed to PowerLab to allow
synchronisation with the respiratory signal. Data collection took
place in a sound-treated studio in Phonetics Laboratory, Stock-
holm University. The setup is described in greater detail in [13].

Voice activity detection was performed semi-automatically
by manual correction of intensity-based segmentations done in
ELAN [14]. Talkspurts shorter than 1 second were classified
as very short utterances (VSUs). This class of utterances has
previously shown to capture a large proportion of backchannel-
like utterances [15].

Since this paper is concerned with prediction of dialogue
participants’ behaviour, we only used left-hand context for es-
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Figure 1: All possible transitions between respiratory cycle
types: speech (SP), very short utterance (VSU) and silent (SIL).
Separate models are fitted for each source state: SP (dashed
lines), VSU (dotted lines) and SIL (solid lines).

Table 1: Cycle type counts

Cycle type

Previous cycle Silent Speech VSU

Silent 1789 205 571
Speech 153 269 186
VSU 589 188 364

timating features. Specifically, for each cycle we extracted the
following features: (1) Inhalation duration, (2) Inhalation am-
plitude above the resting respiratory level (REL), (3) Inhalation
slope, (4) Inhalation delay, and (5) Inhalation starting level with
respect to REL.

Inhalation duration was expressed in log2 ms. Inhalation
delay was measured from offset of (own) preceding speech to
onset of inhalation. Inhalation amplitude and inhalation start-
ing level (henceforth inhalation minimum) above REL were ex-
pressed as percentages of speakers’ respiratory range, whose
limits were estimated at the 5th and 95th percentiles of all peaks
and troughs in the respiratory cycles observed so far. REL itself
was estimated as the median level of troughs in the previous 20
cycles. To the best of our knowledge, this is the first attempt at
estimating speaker’s respiratory range and REL in a fully auto-
matic and incremental fashion.

Every respiratory cycle was then assigned to one of three
classes depending on whether it coincided with no speech ac-
tivity, a shorter (VSU) or a longer (non-VSU) speech segment.
Subsequently, we fitted three separate multinomial logistic re-
gression models predicting the class of each cycle depending on
whether the previous cycle itself coincided with no speech ac-
tivity, VSUs or a longer (non-VSU) speech segment. We refer to
the three models as: the silence model, the speech model and the
VSU model, depending on the class of the previous cycle. Effec-
tively, the models cover all possible transitions between speaker
states (see Figure 1). The overall model was split into three sub-
models to facilitate incorporating the immediately preceding
context and to ease interpretation. The logistic regression mod-
els were fitted following the hierarchical procedure outlined in
[16]. The distribution of transitions between respiratory cycle
types is shown in Table 1.

If we assume that speakers generally do not vocalise dur-
ing inhalations, and furthermore that inhalations introduce no-
ticeable gaps into speech, these transitions can be used as es-
timations of different turn-taking events. The speech model
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predicts whether a speaker who has been speaking during the
previous respiratory cycle is going to continue speaking (i.e.
turn-keeping), to be silent (i.e. turn-yielding), or to produce
backchannel-like activity. Similarly, the silence model predicts
whether a speaker who has been silent during the previous res-
piratory cycle is going to speak (i.e. turn-taking) or to pro-
duce a backchannel. The VSU model, finally, predicts whether
a speaker who has produced a backchannel in the previous cycle
is going to produce a longer stretch of speech (turn-taking) or
be silent.

3. Results
First, we inspected the distributions of the inhalatory features
for the different transitions (figures omitted due to space con-
straints). We found, among other things, that inhalations pre-
ceding turn-keeping transitions were characterised by shorter
inhalation duration, a shorter inhalation delay, a slightly higher
inhalation starting level, and higher inhalation slope compared
both to those in turn-yielding and to those in turn-taking. In-
halation amplitude did not seem to differentiate much between
turn-keeping and turn-yielding. We also found that inhalations
preceding turn-taking were primarily characterised by a higher
inhalation starting level, while inhalation durations and slopes
were somewhere in-between those in turn-keeping and turn-
yielding. In addition, we observed that the transition from VSU
to speech cycles stood out in several respects. Amplitude was
highest overall here, duration was only slightly longer than and
slope was almost as high as that in turn-keeping.

Next, we looked into the results from the three multinomial
logistic regression analyses (shown in Tables 2-4). These tables
show the ‘final models’ including only the features that signif-
icantly improved the models in terms of reduction of -2 × log-
likelihood. We arrived at these models by hierarchical entry of
predictors [16]. We first entered inhalation duration as this was
one of the two most robust features in [6], and this improved all
three models significantly compared to a model where only the
constant was included. We entered inhalation amplitude next,
and this also improved all models significantly. In the third step,
we entered inhalation delay (which is irrelevant by definition in
the silence model) and this improved the speech and VSU mod-
els. In the last step, we entered inhalation minimum, and this
improved the VSU and the silence models, but not the speech
model. Slope was not included in the models due to its high
correlation with duration and amplitude, which is likely to bias
individual parameter estimates.

When going into details in these tables, we found that they
generally supported our observations from the distribution of
features. In the speech model, inhalation duration and delay
made significant contributions to the prediction of the outcome
speech (vs silent) according to the Wald statistic (the p-values
shown in Tables 2-4). Similarly, inhalation delay made a sig-
nificant contribution to the prediction of VSU (vs silent). The
exp(B) values showed that an increase in duration with one unit
(i.e. a doubling in duration) will decrease the odds for speech
by 0.404. Similarly, an increase in delay with one unit will de-
crease the odds for VSU by 0.685. In other words, the shorter
the duration and delay, the more likely will speech be as out-
put. In the VSU model, all predictors made significant contribu-
tions to the prediction of speech, while only duration and delay
contributed to the prediction of VSU. What we learn from the
exp(B) numbers, however, is that a change in one unit of am-
plitude and inhalation starting level has a much smaller impact
on the outcome than a change in duration and delay. Finally, in

the silence model amplitude and inhalation starting level made
significant contributions to the prediction of speech as well as to
the prediction of VSU, while duration only contributed to pre-
diction of VSU. Again, we learn that a change in one unit of
duration has a larger impact on the outcome than a change in
amplitude and starting level.

4. Discussion and conclusions
This paper has shown that several inhalatory features can be
used as cues to turn-taking behaviour, even if the different fea-
tures sometimes cue different distinctions. This in itself indi-
cates context-sensitivity of respiration and the necessity of in-
corporating the previous cycle into predictive models.

The most robust features appear to be those related to tem-
poral compression in turn-keeping, i.e. inhalation duration and
inhalation delay. Thus, previous findings of temporal compres-
sion in turn-keeping [4, 5, 17] could be replicated. Contrary to
previous findings [17], we have shown that inhalation amplitude
and inhalation starting level also make significant contributions
to predictions of turn-taking behaviour. We speculate that the
lack of significant differences in [17] was due to lack of statisti-
cal power caused by problematic use of statistical testing as well
as exclusion of short feedback expression from the analysis.

Indeed, inhalation amplitude was a particularly significant
predictor of speech when following a VSU cycle. This is intu-
itively plausible: VSU function as feedback and grounding de-
vices and as indicators of speaker’s readiness to take the turn.
One or more VSU coupled with a pronounced (and perceptu-
ally salient) inhalation might be used as an effective means of
competing for the floor. By contrast, the decreased inhalation
amplitude in VSU cycles following silent breathing is likely to
be associated with modest respiratory requirements of short ut-
terances. In [18], we suggested that short backchannel-like ut-
terances need little respiratory planning and can be initiated at
any point during the exhalation. The present result might be an-
other aspect of the same phenomenon: if a speaker needs to pro-
duce a feedback expression, he or she can simply interrupt the
inhalation (resulting in its lower amplitude) and start vocalising.

In a similar vein, the somewhat surprising finding that
speech cycles tend be initiated at levels above REL becomes
less puzzling when interpreted as a means of facilitating fast
speaker transitions. From the point of view of a respiratory sys-
tem, speakers have two possibilities to start speaking in a timely
manner. They can either modify their breathing early in antici-
pation of an upcoming speaker change or interrupt their respi-
ratory pattern in a more abrupt fashion by cutting the exhalation
short and initiating a pre-speech inhalation. The latter possibil-
ity is likely to produce exactly the pattern we see in our data,
namely inhalations started before reaching the resting lung con-
figuration. We consider this strategy to be a much more plausi-
ble proposition in the light of little evidence of synchronisation
of respiration between speakers found in literature [19, 3].

In conclusion, we have identified several novel inhala-
tory features predictive of turn-taking behaviour. All features
were estimated in an incremental fashion not relying on global
speaker models, in principle making them available for dialogue
managers. Future work will include formal evaluation of the
models for online prediction of turn-taking.
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Table 2: Coefficients of the speech model (95% BCa bootstrap confidence intervals
for odds ratio based on 3000 iterations). The reference category is silent.

95% CI

B exp(B) LL UL p

Speech Constant -0.568 0.567 0.318 1.027 0.048
Inhalation duration -0.907 0.404 0.288 0.572 0.000
Inhalation amplitude 0.005 1.005 0.993 1.018 0.405
Inhalation delay -0.378 0.685 0.576 0.814 0.000

VSU Constant -0.035 0.966 0.541 1.711 0.902
Inhalation duration -0.163 0.849 0.601 1.149 0.348
Inhalation amplitude -0.007 0.993 0.981 1.006 0.268
Inhalation delay -0.278 0.757 0.641 0.900 0.000

Note. R2 = .07 (McFaddden), .16 (Nagelkerke), .14 (Cox & Snell).
Model χ2(6) = 98.70, p < .001

Table 3: Coefficients of the VSU model (95% BCa bootstrap confidence intervals for
odds ratio based on 3000 iterations). The reference category is silent.

95% CI

B exp(B) LL UL p

Speech Constant -2.512 0.081 0.050 0.134 0.000
Inhalation duration -0.816 0.442 0.311 0.628 0.000
Inhalation amplitude 0.026 1.026 1.015 1.037 0.000
Inhalation delay -0.273 0.761 0.653 0.894 0.000
Inhalation min 0.044 1.045 1.027 1.064 0.000

VSU Constant -0.791 0.453 0.316 0.639 0.000
Inhalation duration -0.541 0.582 0.453 0.755 0.000
Inhalation amplitude 0.005 1.005 0.997 1.014 0.198
Inhalation delay -0.165 0.848 0.745 0.958 0.006
Inhalation min 0.009 1.009 0.996 1.023 0.152

Note. R2 = .06 (McFadden), .12 (Nagelkerke), .11 (Cox & Snell).
Model χ2(8) = 128.12, p < .001

Table 4: Coefficients of the silence model (95% BCa bootstrap confidence intervals
for odds ratio based on 3000 iterations). The reference category is silent.

95% CI

B exp(B) LL UL p

Speech Constant -2.702 0.067 0.045 0.101 0.000
Inhalation duration -0.183 0.833 0.593 1.153 0.188
Inhalation amplitude 0.011 1.011 1.000 1.021 0.025
Inhalation min 0.038 1.039 1.027 1.050 0.000

VSU Constant -0.952 0.386 0.298 0.508 0.000
Inhalation duration -0.564 0.569 0.455 0.708 0.000
Inhalation amplitude -0.007 0.993 0.986 1.000 0.046
Inhalation min 0.011 1.012 1.002 1.021 0.012

Note. R2 = .03 (McFadden), .05 (Nagelkerke), .04 (Cox & Snell).
Model χ2(6) = 105.73, p < .001
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