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Abstract
GlottHMM is a previously developed vocoder that has been

successfully used in HMM-based synthesis by parameterizing
speech into two parts (glottal flow, vocal tract) according to the
functioning of the real human voice production mechanism. In
this study, a new glottal vocoding method, GlottDNN, is pro-
posed. The GlottDNN vocoder is built on the principles of its
predecessor, GlottHMM, but the new vocoder introduces three
main improvements: GlottDNN (1) takes advantage of a new,
more accurate glottal inverse filtering method, (2) uses a new
method of deep neural network (DNN) -based glottal excitation
generation, and (3) proposes a new approach of band-wise pro-
cessing of full-band speech.

The proposed GlottDNN vocoder was evaluated as part of a
full-band state-of-the-art DNN-based text-to-speech (TTS) syn-
thesis system, and compared against the release version of the
original GlottHMM vocoder, and the well-known STRAIGHT
vocoder. The results of the subjective listening test indicate that
GlottDNN improves the TTS quality over the compared meth-
ods.
Index Terms: speech synthesis, vocoder, glottal inverse filter-
ing, deep neural network

1. Introduction
Statistical parametric speech synthesis [1], along with unit se-
lection synthesis [2], is one of the two main disciplines in text-
to-speech (TTS) synthesis. Whereas research of unit selection
synthesis has reached a mature status in the past few years, the
technology in parametric speech synthesis is currently under ex-
tensive progress. In particular, systems with hidden Markov
model (HMM) -based back-ends have been replaced increas-
ingly with deep neural network (DNN) -based technologies [3],
and more recently, with long-short-term memory (LSTM) [4] -
based systems with significant improvements in quality. Statis-
tical TTS, however, suffers from two drawbacks: “muffledness”
and “buzziness” [1]. Muffledness is caused by over-smoothing
of parameter trajectories due to averaging by HMMs, whereas
buzziness is caused by using overly simplified, impulse-like ex-
citation waveforms in vocoding of voiced speech. While ad-
vent of DNNs and LSTMs has helped in tackling muffledness,
buzziness still severely degrades the quality and naturalness of
current statistical TTS systems.

The vocoders used in statistical parametric speech synthe-
sis can be divided into three main categories: Mixed/impulse-
excited vocoders (e.g. STRAIGHT [5, 6]), glottal vocoders
(e.g. GlottHMM [7]), and sinusoidal vocoders (e.g. Quasi-
harmonic model [8]). The first two categories utilize the source-
filter model of speech production [9] which assumes that speech

is produced by a source signal that is convolved with a filter
conveying the vocal tract formants. The difference between the
mixed/impulse-excited and glottal vocoders is in the interpreta-
tion of the vocoder excitation: The mixed excitation approach
assumes that the excitation signal is spectrally flat and contains
the pitch, noise, and phase information, and the filter models
the entire spectral envelope of the signal. The glottal vocoding
approach in turn assumes a more physiologically motivated dis-
tinction between the excitation and the filter: The excitation is
assumed to correspond to the time-derivative of the true airflow
generated at the vocal folds (consisting of the combined effects
of the glottal volume velocity and lip radiation [9]), and the filter
corresponds to a transfer function that is created by the physi-
ological organs of the human vocal tract. Since natural talkers
are capable of varying the vibration mode of their vocal folds,
the spectral envelope of the glottal excitation is, importantly,
not constant (e.g. flat) but instead varies when, for example, the
phonation type of speech changes [10].

Since its inception, the GlottHMM vocoder proposed in
Raitio et al. [7] has become a relatively well-known glottal
vocoding platform [1] that received its final release version re-
cently. During its development phase, the vocoder underwent
multiple changes in its components (e.g. changes in glottal pulse
selection and generation [11], glottal inverse filtering method
[12]). Our previous studies with GlottHMM, conducted almost
exclusively with 16 kHz speech, have been successful particu-
larly in high-quality synthesis of a Finnish male voice [7], in
adapting the synthesis to different speaking styles [13] and in
improving the synthesis intelligibility under noisy conditions
[14]. Recently, we introduced a novel DNN-based glottal ex-
citation generation scheme aiming specifically at high-pitched
voices [15]. In the proposed excitation generation, a DNN
is trained to generate a glottal flow derivative waveform com-
puted with a new glottal inverse filtering method, quasi-closed
phase analysis (QCP) [16]. The proposed vocoder was evalu-
ated in [15] with a HMM-based synthesis system resulting in
significantly improved performance over two baseline glottal
vocoders.

Given the high potential of glottal vocoding indicated both
by GlottHMM and the more recent QCP-based technique, the
current study examines, for the first time, the use of QCP-based
glottal vocoding in synthesis of full-band (48 kHz) speech. The
study introduces a new glottal vocoder, named GlottDNN. The
new vocoder involves many improvements to its predecessors,
both GlottHMM and the QCP-based method introduced in [15]
(e.g. new method of DNN-based glottal pulse generation, new
approach of band-wise processing of speech), all of which are
described in detail in Section 2. The proposed new GlottDNN
vocoder is used in a state-of-the-art DNN-based synthesis plat-
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Figure 1: Block diagram of the analysis stage.

form proposed in [17] to synthesize a 48 kHz male voice and
the vocoder performance is compared to the release versions of
GlottHMM and STRAIGHT in a subjective listening test.

2. The GlottDNN vocoder
2.1. General

The main changes from the most widely used previous glot-
tal vocoder, GlottHMM, to the new GlottDNN vocoder can be
categorized as follows: (1) The GlottDNN vocoder utilizes a
recently proposed glottal inverse filtering (GIF) method, quasi-
closed phase (QCP) analysis. QCP [16] enables more accurate
estimation of the glottal flow than iterative adaptive inverse fil-
tering (IAIF) [18], the inverse filtering method used in Glot-
tHMM. (2) The glottal excitation of the synthesized speech is
generated with a specific DNN that maps vocoder feature vec-
tors into time-domain glottal pulses. [15] (3) GlottDNN sup-
ports full audio band (up to 48 kHz sampling rate) that is an
increasingly imposed demand for state-of-the-art quality.

2.2. Full-band speech analysis and parametrization

The block diagram depicting the GlottDNN’s analysis stage for
voiced frames is shown in Figure 1, and the extracted parame-
ters are presented in Table 1. First, frame energy and fundamen-
tal frequency (f0) information is extracted and saved to the fea-
ture vectors. Next, the pre-emphasized frame is split into low-
and high-band signals with quadrature mirror filtering (QMF)
[19] using a linear phase a FIR filter with a cut-off frequency of
0.5 · π. Then, the bands are down-sampled by a factor of two.
For full-band speech sampled with 48 kHz, the low-band and
high-band cover the frequency range of 0 Hz – 12 kHz and 12
kHz – 24 kHz, respectively. Next, the analysis is split between
the high-band and low-band.

Table 1: Speech features and the number of parameters used
for full-band (48 kHz) speech. The parameter orders were de-
termined heuristically based on informal listening tests.

Feature Parameters per frame
Fundamental frequency (log F0) 1
Energy (log) 1
Low-band vocal tract (LSF) 42
High-band vocal tract (LSF) 18
Spectral tilt (LSF) 24
Noise shape (LSF) 24
Noise energy (log) 1

QMF-based sub-bands are used in GlottDNN because of
the following two drawbacks in auto-regressive (AR) modeling
of wide-band speech. (1) Line spectral frequencies (LSFs) are
widely used to represent AR filters and they have been taken ad-
vantage of, for example, in previous glottal vocoders [7]. Using
classical root solving techniques (e.g. [20]), however, to con-
vert LSFs to polynomials and vice versa results in severe accu-
racy problems with large sampling frequencies, such as 48 kHz,
because AR-model orders become inevitably large when set ac-
cording to the rule [9] between the sampling frequency (Fs) and
the filter order (p) (e.g. p > 50 with Fs = 48 kHz). (2) The per-
ceptually most important part of the vocal tract is the frequency
range of 0.5 kHz– 4 kHz containing the first three formants. Im-
proved spectral modeling of this frequency range in full-band
speech would in principle be possible by using frequency warp-
ing [21] in the computation of AR models without the need for
using large AR orders. The use of frequency warping in the
GlottDNN vocoder is not justified because the vocoder is based
on glottal inverse filtering (i.e. QCP), a procedure which cancels
the vocal tract resonances on a linear frequency scale. By split-
ting the speech signal with the proposed QMF approach into the
low-band and high-band, it is, however, possible to utilize AR
models whose order is smaller due to narrower width of the two
bands. In addition, the procedure enables allocating more accu-
rate, larger order AR models for the more important low-band
while using smaller order spectral models for the high-band.

The low-band contains the most important characteristics
of the glottal excitation, including the glottal formant as well
as the most prominent harmonics [9]. To decouple between the
glottal excitation and the vocal tract formant structure, a high-
quality GIF method, quasi-closed phase (QCP) analysis [16], is
applied to the low-band signal hence obtaining an estimate of
the vocal tract (VT) filter envelope. QCP is based on weighted
linear prediction (WLP) [22] in which the square of the predic-
tion error is temporally weighted with a pre-defined weighting
function. By using weighting functions that attenuate the pre-
diction error near glottal closure instants (GCIs), WLP enables
computing vocal tract models that are less biased by the glottal
source. Since the glottal excitation has a reduced effect within
the high-band (e.g. harmonics are less prominent), it is possible
to model the high-band envelope with conventional LP analysis.
The low- and high-band VT estimates are converted into LSFs
saved to the feature vector.

Next, the transfer functions of the low- and high-band fil-
ters are combined into a single polynomial to be used in glottal
inverse filtering of the frame. The zero-padded discrete Fourier
transforms (DFT) of length NFFT are computed for the two fil-
ter polynomials, and their magnitude spectra are concatenated
to form a single magnitude spectrum of length 2NFFT. The gain
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Figure 2: Block diagram of the synthesis stage.

of the high-band spectrum is set so that the amplitude at its first
sample matches that of the last sample of the low-band spec-
trum. Then, the square of the concatenated magnitude spectrum
is inverted, and the result is inverse Fourier transformed (IDFT)
to obtain the corresponding autocorrelation sequence. The au-
tocorrelation function is finally transformed with the Levinson-
Durbin recursion [9] to obtain a stable all-pole filter modeling
the vocal tract of the full-band.

The obtained full-band vocal tract model is used for inverse
filtering the speech signal. The noise component of the glottal
flow derivative is estimated with median filtering. The median
filter uses a window size of 4 ms and the filtering is computed
in two parts for a two pitch-period glottal flow derivative wave-
form using square-root Hann windowing so that the main exci-
tation peak in the center is kept intact. By subtracting the me-
dian filter output from the glottal flow derivative, a noise-like
signal, called median filter residual, is obtained. The median
filter residual is considered to represent the desired noise com-
ponent of the excitation and it is further high-pass filtered with
a cut-off frequency of 2 kHz. The energy of the median filter
residual relative to the original glottal flow derivative is then
parametrized into the feature vector. Finally, the spectral shape
of the median filter residual is parametrized with LP analysis.
The main justifications in using the proposed approach in esti-
mating the noise component from voiced speech are: the pro-
cess is (1) robust and (2) computationally effective. The cor-
responding harmonic-to-noise ratio (HNR) -based modeling of
the noise component in GlottHMM requires iterative manipu-
lation in the spectral domain, which is computationally heavy,
especially for full-band speech where the vector sizes are large.

For unvoiced frames, the analysis procedure is greatly sim-
plified. Both the low- and high-band VT components are mod-
eled with LP analysis, and along with the energy, they are solely
used to model the frame.

2.3. Full-band speech synthesis

Speech synthesis from the vocoder parameters of Table 1 is de-
picted in the block diagram of Figure 2. First, the entire ex-
citation signal is generated separately for voiced and unvoiced

frames. The voiced excitation signal is generated with pitch-
synchronous overlap-add (PSOLA) of two pitch-period glottal
flow derivative pulses. The pulses are generated with a deep
neural network (DNN) (more details in [15]) that predicts a two
pitch-period glottal flow derivative wave, estimated in the train-
ing phase with QCP, from an acoustic feature vector. The pulse
waveform is square root Hann windowed and aligned to have
a glottal closure instant at the center of a fixed-length frame.
The signal is zero-padded from its edges to keep its original
length unchanged. After the pulse generation, the signal is win-
dowed with a square root Hann window whose length is equal
to twice the length of the desired fundamental period. Next,
the (voiced speech) noise component is generated as uniformly
distributed white noise whose spectral envelope and intensity is
shaped by the corresponding LSFs and energy value. Finally,
the processed signal is added to the DNN-generated excitation
waveform.

Before PSOLA, the generated glottal excitation is matched
in terms of its spectral tilt to the target pulse. This is done by
using a pole-zero matching filter that is constructed as a ratio
between two low-order LP filters of an equal prediction order:

Hmatch(z) =
Hbase(z)

Htarget(z)
, (1)

where Hmatch(z) is the matching filter, and Hbase(z) denotes the
LP inverse model of the frame to be matched and 1

Htarget
(z) is

the target spectral tilt.
Even though the above described process of generating the

glottal excitation in the GlottDNN vocoder might look similar
to that of GlottHMM, the two vocoders differ greatly in excita-
tion generation. In GlottDNN, the DNN-based excitation gen-
eration utilizes the QCP inverse filtering algorithm as opposed
to the previously used IAIF-based method [13], and produces
glottal flow derivative pulses that do not need to be interpolated
to match a target length. This solves many problems: (1) The
obtained base pulse has more realistically varying gross shape
from frame to frame when compared to the original GlottHMM
where either a single base pulse is used [7] or the best fitting
pulse is searched from a library of base pulses [11]. (2) The
obtained pulse requires less processing than in GlottHMM, as
its length does not need to be interpolated.

The unvoiced excitation is generated frame-by-frame as
spectrally white noise whose energy is scaled to match the tar-
get. After the voiced and unvoiced excitation waveforms have
been generated, they are combined, and the obtained excitation
is filtered with the vocal tract model obtained from the low-
band and high-band LSFs. The low-band and high-band filters
are merged with the same process as described in Section 2.2.

3. Experiments
The GlottDNN vocoder was evaluated with a subjective com-
parison category rating (CCR) listening test [23] on the natural-
ness of TTS quality. The comparison was conducted between
GlottDNN, the baseline GlottHMM vocoder (using frequency
warping as proposed in [21]), and the STRAIGHT vocoder
[5, 6] that has become the de-facto standard in statistical para-
metric speech synthesis.

Speech data employed in our experiments consisted of 2572
utterances recorded by a male British speaker named as “Nick”
[24]. Those utterances were divided into 2400, 70, and 72 ut-
terances as training set, development set and evaluation set, re-
spectively. The sampling rate of the speech data was 48 kHz.
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Table 2: Scale used in the subjective evaluation.

+3 much more natural
+2 somewhat more natural
+1 slightly more natural

0 equally natural
-1 slightly less natural
-2 somewhat less natural
-3 much less natural

3.1. The TTS system

The listening test samples were created with a state-of-the-art
DNN-based TTS system proposed in [17]. The TTS DNN sys-
tem has 5 hidden layers with 1024 nodes in each layer. The acti-
vation function of hidden layers was tanh (hyperbolic tangent),
and linear function for output layer. During training, weights
were regularized by L2 norm with penalty factor of 0.00001,
the mini-batch size was set to 256 and momentum was used.
The maximum number of epochs was set to 25 with early stop-
ping criteria.

The input features for all the three systems were equal, and
extracted from the question file used for the decision tree clus-
tering in the HTS system. The dimension was 601 which com-
prised 592 binary features and 9 numerical features. The bi-
nary features contains the information about such as quinphone
identity, syllable location, part-of-speech, word and phrase. The
appended numerical features provide the information at frame
level such as the frame position within the HMM state and
phoneme, the state position within the phoneme, and state and
phoneme durations. Min-max normalization was applied on in-
put features which scaled the features into the range of [0.1,
0.99]. Mean-variance normalization was applied on the output
features. MLPG using pre-computed variances from the train-
ing data was applied to the output features.

3.2. Subjective evaluation

Subjective evaluation of the three speech synthesis systems was
carried out by a pair comparison test based on the Category
Comparison Rating (CCR) test, where the listeners were pre-
sented with synthetic sample pairs produced from the same lin-
guistic information with the different systems under compari-
son. The listeners were asked to evaluate the naturalness of first
sample compared to the second sample using the seven point
Comparison Mean Opinion Score (CMOS) scale presented in
Table 2. The listeners were able to listen each pair as many
times as they wished and the order of the test cases was ran-
domized separately for each listener.

A web based listening test was conducted with the mod-
ified Beaqlejs application [25]. 10 synthesized samples were
selected from each system and 10 null-pairs were included in
the test. Each test case was presented twice to ensure listener
consistency and enable the possible post-screening of test par-
ticipants, which results in a total of 60 (3*2*10) + 10 = 70 sam-
ples for the listening test. In order to reduce the duration of the
listening test, we presented only 35 samples, selected randomly
from the 70 samples, for each subject.

A total of 12 subjects, mainly international master’s stu-
dents at Aalto University and University of Edinburgh, partici-
pated in the listening test. All subjects were included in the final

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

S
c
o
re GlottHMM

STRAIGHT

GlottDNN

Figure 3: Results of the subjective listening test with their 95%
confidence intervals.

analysis of the results. The results of the subjective evaluation
are presented in Figure 3. The figure shows the mean score
for each pair comparison in the CCR test on the horizontal axis
with the 95% confidence intervals. In other words, Figure 3 de-
picts the order of preference of the three synthesis methods by
averaging for each method all the CCR scores the correspond-
ing synthesizer was involved. For each comparison, the mean
difference was found to differ from zero with (p < 0.001), indi-
cating statistically significant listener preferences between the
three synthesis methods. The results indicate that the glottal
vocoders, GlottHMM and GlottDNN, provide superior quality
over the STRAIGHT system, and the proposed GlottDNN sys-
tem improves the quality over the baseline GlottHMM system.
All of these differences have a statistically significant margin.

4. Discussion
A new glottal vocoding method, GlottDNN, was proposed in
the present study. GlottDNN utilizes a method of glottal vocod-
ing where a new glottal inverse filtering method, quasi-closed
phase analysis (QCP), is applied to full-band speech signals.
In synthesis, a deep neural network (DNN) is used to predict
a glottal excitation waveform from the vocoder parameters to
obtain more natural synthesis quality.

GlottDNN was evaluated in synthesis of a full-band (48
kHz) male voice using a state-of-the-art DNN-based TTS sys-
tem. The evaluation compared GlottDNN with the baseline
GlottHHM vocoder and the well-known STRAIGHT vocoder
in a comparison category rating (CCR) test. The results of the
CCR test indicate that GlottDNN improves the synthesis natu-
ralness with a statistically significant margin in relation to the
compared methods.

Plans of future research involving the GlottDNN vocoder
involve a more thorough investigation on the vocal tract spec-
trum modeling representation, and the evaluation of perfor-
mance on a more broad set of speakers and speaking styles.
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