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Abstract
This study presents an automatic glottal inverse filtering

(GIF) technique based on separating the effect of the glottal
main excitation from the impulse response of the vocal tract.
The proposed method is based on a non-negative matrix fac-
torization (NMF) based decomposition of an ultra short-term
spectrogram of the analyzed signal. Unlike other state-of-the-
art GIF techniques, the proposed method does not require esti-
mation of glottal closure instants.

The proposed method was objectively evaluated with two
test sets of continuous synthetic speech created with a glottal
vocoding analysis/synthesis procedure. When compared to a set
of reference GIF methods, the proposed NMF technique shows
improved estimation accuracy especially for male voices.
Index Terms: speech analysis, glottal inverse filtering, non-
negative matrix factorization

1. Introduction
The glottal volume velocity waveform, or the glottal flow, is the
main acoustical excitation in production of voiced speech. The
study of glottal excitations is an important tool in many areas
of speech research, such as in fundamental research of speech,
medicine (e.g. occupational voice or speech pathology), pho-
netics (e.g. prosody), and neuroscience (e.g. brain responses
evoked by speech). In addition, application of glottal excitation
estimation has recently gained momentum in speech technol-
ogy, especially in speech synthesis [1].

Glottal inverse filtering (GIF) is a computational method for
estimating the glottal flow from a recorded microphone signal.
This approach assumes the so-called source-filter model [2] of
speech production, which is most commonly presented as a lin-
ear cascade of three processes: (1) a time-domain input that rep-
resents the glottal flow, (2) a digital filter representing the vocal
tract transfer function, and (3) a differentiator that models the
lip radiation effect (i.e. transform of flow at lips into pressure in
free field). GIF is performed by blindly applying antiresonances
to the recorded acoustic pressure signal so that the effects of the
vocal tract and lip radiation are cancelled, ideally leaving the
glottal flow intact. The practice is effective and non-invasive
which is key for automated solutions.

Several digital GIF methods have been developed since the
1970’s. (For further details, see reviews in [3, 4]). Some of
the most well-known previous methods were recently compared
with two novel GIF techniques proposed by the current authors,
Quasi-closed phase analysis (QCP) [5] and Quadratic program-
ming GIF (QPR) [6]. Our experiments in [5, 6] indicate that
both QCP and QPR show very good accuracy in glottal flow es-
timation. Both of these techniques are based on the principle of
the Closed Phase Covariance (CP) analysis, that is, computing
the vocal tract auto-regressive (AR) model from excitation-free

speech samples that are located in the closed phase of the glot-
tal cycle. In QCP, this principle was developed further by us-
ing temporally weighted linear prediction (WLP) [7] as a vocal
tract modelling technique. QCP uses a special type of a tempo-
ral weighting function, the attenuated main excitation (AME)
waveform [8], which enables attenuating the contribution of
samples located in the vicinity of the glottal main excitation
in computation of the vocal tract model. QCP takes advantage
of all the samples of the analysis frame in the computation of
the vocal tract AR model instead of just those few that are lo-
cated in a single closed phase as in conventional CP. The QPR
method expanded this idea by proposing an approach in which
the conventional CP based optimization is computed jointly
with the AME-based optimization by using quadratic program-
ming. Both QCP and QPR have shown improved estimation
accuracy of the glottal flow particularly for high-pitched voices.
Both of these new GIF-techniques, however, require extraction
of the glottal closure instants (GCIs) which may be a source of
error particularly when processing noisy or spontaneous speech.

In the present study, we propose a novel GIF technique
based on non-negative matrix factorization (NMF). The tech-
nique, NMF-GIF, uses the principles of AME modeling in the
computation of the vocal tract. Differently from conventional
CP analysis, QCP, and QPR, however, no GCI extraction is
needed in NMF-GIF thereby overcoming performance degra-
dation caused by erroneous GCI estimates. This is achieved by
performing a rank-2 NMF decomposition for an ultra short-term
spectrogram consisting of ≈ 5 ms frames with 1 sample shifts.
This decomposition is capable of separating those areas of the
spectrogram that are greatly influenced by the glottal excitation
from the areas less affected, thereby justifying the use of NMF
in glottal inverse filtering.

The proposed method is based on the source-filter model
and NMF processing, whose basics are reviewed in Section 2.
The proposed approach, where NMF is applied on a short-term
convolution matrix, is presented in Section 3. Our experimen-
tal evaluation in Section 4 shows that the proposed method im-
proves GIF estimation accuracy especially for male voices.

2. Background
2.1. Source-filter model

The source-filter model of speech production is defined in the
z-domain as

S(z) = G(z)V (z)L(z), (1)

where S(z) is the speech signal, G(z) is the glottal excitation,
V (z) is the vocal tract transfer function, andL(z) is the transfer
function of the lip radiation effect. As the transfer function of
the lip radiation effect is usually assumed to be known and of
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the form
L(z) = 1− αz−1, (2)

where α is a constant within the range [0.96, 1[, GIF methods
are left with the task of accurately estimating the vocal tract
transfer function V (z) to obtain an estimate of G(z). This is
also the principle approach taken in the proposed method.

2.2. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [9] is a popular
method for multivariate analysis of non-negative data, such as
spectrograms [10], images [11], and text [12]. The task of NMF
is to find, given a non-negative matrix X ∈ Rm×N , two non-
negative matrix factors W ∈ Rm×k and H ∈ Rk×N so that:

X ≈WH. (3)

By denoting the length of an observation vector xi by m, the
number of observations by N , and the rank of the decomposi-
tion by k, W contains basis vectors as its columns. Moreover,
each column of X can be represented as xi ≈Whi, meaning
that each column of X can be approximated as a linear com-
bination of the columns of W weighted by the non-negative
components of H.

The most common way to optimize NMF is to minimize the
Euclidean distance between X and WH:

min
W,H

||X−WH||2 s.t. W,H ≥ 0 (4)

Efficient algorithms based on multiplicative iterative up-
dates on W and H were introduced in [13]. Further advance-
ments in NMF optimization include, for example, conditions to
encourage sparsity in H [14], convolutive NMF [15], convex
NMF [16], and orthogonal NMF [17]. These recent advance-
ments were considered during the development of the proposed
GIF method, but they failed to yield any significant performance
gains. Therefore, the conventional least squares NMF was se-
lected as the framework for the remainder of the study. This
choice is justified by the simplicity and efficiency of the least
squares algorithm, and also by the method’s close ties to K-
means clustering [18].

3. Glottal Inverse Filtering with
Non-negative Matrix Factorization

3.1. NMF Application to GIF

As discussed in Section 2.1, the source-filter model assumes
that voiced speech is produced by convolving the glottal flow
with the impulse responses of the vocal tract and lip radia-
tion. The glottal flow and the lip radiation effect can be com-
bined into the effective driving excitation (glottal flow deriva-
tive). Therefore, the model simplifies into an excitation (glottal
flow derivative) and filter (vocal tract). During the glottal closed
phase, the excitation is (close to) zero, and the resulting speech
waveform corresponds mainly to the decaying response of the
vocal tract. This phenomenon is the main idea behind the GIF
techniques (e.g., [19], [5]) based on the conventional CP anal-
ysis. However, at instants of the main excitation of the vocal
tract, which happen during glottal closing phases, the glottal ex-
citation has a strong effect on the produced speech signal. This
effect can be also seen in a spectrogram, if the spectral analysis
is computed over a frame whose duration is less than one glot-
tal cycle. Figure 1 (a) presents a spectrogram computed from
a 30 ms frame of pre-emphasized speech. The length of the
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Figure 1: (a) Spectrogram of a frame of pre-emphasized speech
superposed with the corresponding differentiated electroglot-
tography (dEGG) signal. DFT length is 45 samples (zero-
padded to 1024), and hop size is 1 sample. (b) NMF activa-
tion functions (H) computed from the given spectrogram. (c)
Obtained NMF basis vectors (W).

DFT window (computed with 8-kHz sampling) was 45 samples
(5.5 ms), and the hop size was 1 sample (0.125 ms). Super-
posed with the spectrogram is the corresponding differentiated
electroglottography (EGG) signal. It can be seen from the spec-
trogram that in vicinity of GCIs, which correspond to the neg-
ative peaks of the differentiated EGG, the spectral properties
of the speech signal are different from the spectra computed
away from these peaks. The most distinct spectral features at
GCIs are the more prominent high-frequency contents (corre-
sponding to a smaller spectral tilt), and the appearance of the
harmonic comb structure for the multiples of the fundamental
frequency (f0). Both of these properties are caused solely by
the glottal excitation.

The strategy taken by the conventional CP analysis is to
identify the GCIs and glottal opening instants (GOIs), and to
compute a vocal tract model using a covariance criterion based
linear prediction (LP) analysis from samples between one GCI
and the next GOI. Though effective, this method defines an AR
model from a small number of samples which makes the anal-
ysis sensitive to the accurate estimation of the GCIs and GOIs
[19]. In the quasi-closed phase (QCP) method [5], robustness
is improved as only the GCIs are needed and the AR model is
defined from the data samples of the entire analysis frame using
the AME weighting. Poor GCI estimates caused by non-ideal
conditions, however, still cause problems for accuracy of QCP
[20, 5].

To the best of our knowledge there are only few techniques
that estimate the vocal tract transfer function over the closed
glottal phase without explicitly detemining GCIs. One exam-
ple of this kind of a technique is weighted linear prediction
(WLP) [7], or the more recent stabilized weighted linear predic-
tion (SWLP) [21], with the short-term energy (STE) weighting
function [7].
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Figure 2: Block diagram of the proposed NMF-GIF method.

In the present study, we aim to factorize, using NMF, a
spectrogram similar to that of Figure 1 (a) into two components:
(1) the one that corresponds to the glottal main excitation and
(2) the one outside the main excitation. In other words, we per-
form NMF with rank 2 on a magnitude spectogram with a short
(≈5 ms) DFT length and 1 sample hop size, which yields two
basis vectors on the matrix W, and their activation functions
on the matrix H. The activation functions and basis vectors are
depicted in Figures 1 (b) and (c), respectively. The basis vectors
correspond to the average spectral envelopes during the glottal
main excitation and outside the main excitation. As our goal
is the estimation of the spectral envelope of the signal that is
decoupled from the glottal main excitation, one of these basis
vectors is exactly what we are looking for. It can be observed
from Fig. 1 (b), that the activation function of “Component 2”
corresponds remarkably well with the spectrum at GCIs (i.e. at
instants of main glottal excitation) seen in the spectrogram, and
the activation function of “Component 1” has orthogonal be-
havior to “Component 2”.

3.2. Proposed method

As the main principles of applying NMF to GIF were presented
in Section 3.1, the in-depth description of the implementation is
presented next. The block diagram of the proposed method is
shown in Figure 2.

First, a speech frame is pre-emphasized with a first-order
differentiator (H(z) = 1−z−1) to roughly cancel out the spec-
tral tilt of the glottal excitation [2]. The signal is then Fourier-
transformed in ≈ 5 ms sub-frames which are shifted by 1 sam-
ple to obtain a series of magnitude spectra that are raised to the
power of p to compress the spectrum similarly to a log function,
while still maintaining non-negativity. This procedure has been
observed to be useful e.g. in robust AR model estimation for
speaker recognition [22]. In the present study, p = 0.55 is used
based on informal test.

NMF is known to be a non-convex technique [13], which
means that the optimization algorithms are only guaranteed to
arrive at local minima. As a result of this, the correct initial-
ization has a strong effect on the overall performance of the
method. As our problem is essentially to cluster the given spec-
tra into “with main excitation” and “without main excitation”
components, we used K-means clustering [23] to initialize the
vectors for W by selecting the obtained centroid vectors as the
initial values. For H, the activation functions were selected

as the normalized Euclidean distances from the corresponding
centroid vectors.

After the initialization, the NMF decomposition can be
computed yielding the basis vectors and their activation func-
tions. The power spectra of the basis vectors are raised next to
1
p

to cancel the effect of compression and the resulting spec-
tra are inverse Fourier transformed to obtain the corresponding
autocorrelation sequences. The Levinson-Durbin algorithm is
then applied to the m first autocorrelation coefficients to obtain
the vocal tract inverse filter candidates a1 and a2.

The final task is to detect the inverse filter corresponding
to the best glottal flow estimate. This is done by perfoming
glottal inverse filtering according to Eq. 1, and normalizing the
obtained glottal flow estimates between [0, 1]. The normalized
estimate that yields the smallest norm-1 value is selected as the
final estimate.

4. Experiments
4.1. Test setup

Evaluation of GIF methods is known to be problematic, be-
cause the reference glottal excitation cannot be acquired from
real speech [3]. The most common way to circumvent this
problem is to utilize synthetic speech where the excitation sig-
nal is known. Most commonly, the synthesized speech signals
are produced as sustained vowels using a parametric (e.g. the
Liljencrants-Fant (LF) model [24] with an all-pole vocal tract
model) or a physical modelling based approach [5]. Test vowels
synthesized with these techniques, however, are unrealistically
stationary, which might add unknown bias to the evaluation ex-
periments.

In the present study, we propose to use continuous syn-
thetic speech based on the source-filter model of speech pro-
duction (see Section 2.1). The synthetic continuous speech
with a known glottal excitation is produced with a tweaked ver-
sion of the GlottHMM vocoder [1], in which real speech sam-
ples are transformed with an analysis/synthesis process. The
analysis/synthesis process is performed as follows. First, glot-
tal vocoding analysis is performed on the given speech signal.
This includes the estimation of feature vectors for each analy-
sis frame that consist of the f0, harmonic-to-noise ratio (HNR),
and vocal tract spectral envelope. The spectral tilt parameters
are omitted. Also, GlottHMM’s original GIF method, Itera-
tive Adaptive Inverse Filtering (IAIF), is replaced with a more
straightforward pre-emphasized LP analysis to ensure that the
features of the re-synthesized signals do not correspond to any
of the compared methods’ typical results. Second, the speech
signal is resynthesized according to the feature vectors by first
constructing the glottal excitation based on the anti-aliased LF
model by Kawahara [25]. For simplicity, fixed LF parameters
were used to produce a constant phonation type, but the f0 and
HNR were modified to match the vocoder parameters. The ex-
citation waveform for the whole utterance was saved, and then
filtered according to the vocal tract filter trajectory to produce
the final speech waveform.

Two sets of test speech was used in the evaluation: Sus-
tained real speech vowels of varying phonation types, and con-
tinuous normal speech. Both test sets were also divided ac-
cording to the gender of the talker. The data used for sustained
vowels included recordings of all eight Finnish vowels ([a], [e],
[i], [o], [u], [y], [ae], and [oe]) from three male and four female
speakers using a breathy, modal, or pressed phonation repeated
three times. In total, the data contained 84053 test frames.
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Figure 3: Estimation error in five objective measures (see Section 4) for sustained vowels. Mean values denoted with ‘x’s, and the lines
denote the standard deviation.
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Figure 4: Estimation error in five objective measures (see Section 4) for continuous speech. Mean values denoted with ‘x’s, and the
lines denote the standard deviation.

On the vocoded samples, the LF parameters were crudely ad-
justed to the target phonation type by selecting the typical LF
parameters for each phonation type from [26]. The continuous
speech dataset utilized 100 sentences from high-quality female
(“Nancy” [27]) and male (“Nick” [28]) voices, resulting in a
total of 103640 test frames. The LF parameters were set for
modal phonation for all samples.

For each frame of the test sets, error between the es-
timated and reference glottal flows was computed using the
following objective measures: Normalized amplitude quotient
(NAQ) [29], quasi-open quotient (QOQ) [30], mean-squared er-
ror (MSE), H1-H2 [31], and harmonic richness factor (HRF)
[32]. NAQ measures the relative length of the glottal clos-
ing phase, QOQ measures the approximate length of the glottal
open quotient, and HRF and H1H2 are measures that are used to
depict the spectral tilt of the glottal source waveform. The pro-
posed method (denoted as “NMF”) was compared to the fol-
lowing GIF methods: Quasi-closed phase analysis (QCP) [5],
closed phase covariance analysis (CP) [19], and iterative adap-
tive inverse filtering (IAIF) [33]. Out of the compared methods,
QCP and CP require GCI (and GOI for CP) estimation, whereas
NMF and IAIF do not. The GCI and GOI estimation was per-
formed with the SEDREAMS algorithm [34]. For the analysis,
we used a sampling rate of 8 kHz with a 25 ms analysis frame
length (with 5ms pre-frame buffer), and a vocal tract filter order
m = 10. The CP method was implemented with the covariance
criterion in LP analysis, by using two pitch-period analysis for
frames with F0 ≥ 200Hz. For the QCP method we used the
fixed AME parameters of PQ = 0.01, DQ = 0.7, and Nramp = 7
[5]. For IAIF we used the spectral tilt prediction order of g = 4
[33].

4.2. Results

The results for the tests described in Section 4.1 are presented
in Figures 3 and 4 for the sustained and continous data sets, re-
spectively. In most cases, the overall score of the NMF method
is tied with the QCP method for the best score. The distinc-

tion between the methods is that the NMF method can be seen
to perform better with male voices, whereas QCP is the best
method for female voices that are known to have a higher f0
than male voices. This can be explained by the use of the fixed-
length ultra-short analysis window (5.5 ms), that for high f0s
contains over one glottal cycle of data. Lower frame durations
were experimented with, but it was concluded that considerably
smaller short-frame sizes had too little data for good results.
Also, an important thing to note is that the GCI estimation-free
NMF method clearly outperforms IAIF, the other comparable
method in this regard.

5. Discussion
This study presented a novel approach to glottal inverse filtering
with non-negative matrix factorization (NMF). The method is
based on computing ultra short-term spectrograms of the speech
signal, and then using the rank-2 NMF decomposition to ac-
quire spectral envelope estimates corresponding to the glottal
main excitation-free areas of the speech signal. The method can
be applied robustly in a completely automatic manner that does
not require external parameter estimations e.g. for the glottal
closure instants.

The proposed method was evaluated on a vocoded real
speech based dataset of sustained vowels and continuous speech
where the LF-model based glottal excitation signal is known.
The results indicate that the proposed method is on par with the
state-of-the art methods, and even outperforms them for male
speech. These properties contrast the proposed method from
our previous work (Quasi-closed phase analysis (QCP) [5] and
Quadratic programming GIF (QPR) [6]) in the sense that (1)
the NMF-based method is GCI estimation free, and (2) QCP
and QPR were shown to perform best for very high valued f0s.
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