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Abstract
This paper describes a novel correct phoneme sequence estima-
tion method that uses a recurrent neural network (RNN)-based
framework for spoken term detection (STD). In an automatic
speech recognition (ASR)-based STD framework, ASR perfor-
mance (word or subword error rate) affects STD performance.
Therefore, it is important to reduce ASR errors to obtain good
STD results. In this study, we use an RNN-based phoneme es-
timator, which estimates a correct phoneme sequence of an ut-
terance from some sorts of phoneme-based transcriptions pro-
duced by multiple ASR systems in post-processing, to reduce
phoneme errors. With two types of test speech corpora, the
proposed phoneme estimator obtained phoneme-based N-best
transcriptions with fewer phoneme recognition errors than the
N-best transcriptions from the best ASR system we prepared.
In addition, the STD system with the RNN-based phoneme es-
timator drastically improved STD performance with two test
collections for STD compared to our previously proposed STD
system with a conditional random fields-based phoneme esti-
mator.
Index Terms: correct phoneme estimation, post-processing, re-
current neural network, spoken term detection

1. Introduction
Spoken term detection (STD), a speech data retrieval technol-
ogy, is designed to determine whether a given utterance includes
a query term consisting of a word or phrase. STD research has
become popular topic in spoken document processing studies,
and the number of STD research reports has increased follow-
ing the 2006 STD evaluation organized by the National Institute
of Standards and Technology [1].

The difficulty in STD lies in the search for terms un-
der a vocabulary-free framework because search terms are not
known prior to a large vocabulary continuous speech recogni-
tion (LVCSR) system. In the past, most STD studies have fo-
cused on the out-of-vocabulary (OOV) problem. For example,
many papers have proposed subword (syllable or phoneme)-
based STD approaches [2], which were very robust for OOV
queries.

Another difficulty is that STD is weak against speech recog-
nition errors. For example, the speech recognition performance
(word or subword error rates) of target speech affects STD per-
formance in a matching process between a subword sequence
of a query term and a subword-based transcription of the tar-
get speech under a subword-based STD framework. Therefore,

to obtain good STD results, improving automatic speech recog-
nition (ASR) performance for target speech is also important.
However, it is nearly impossible to completely remove ASR er-
rors even when state-of-the-art ASR technologies such as deep
learning-based acoustic modeling are used. Therefore, an STD
technique that is robust against ASR errors is required. For
example, a lattice-based STD approach [3, 4] has been pro-
posed. Lattice representation of an ASR result of an utterance
has richer word (or subword) sequence information than a sin-
gle word (or subword) sequence output. Therefore, a query term
can be flexibly matched against a lattice.

This paper proposes a novel framework that estimates cor-
rect phoneme sequences from multiple ASR system outputs of
search-targeted speech using a recurrent neural network (RNN)
framework for an STD task. We use a long short-time memory
(LSTM [5])-based correct phoneme sequence estimator to im-
prove a subword-based transcription of search-targeted speech.

An LSTM-based network model is widely used in vari-
ous ASR tasks, such as language modeling [6, 7] and acous-
tic modeling [8, 9], and it is known to perform extremely well
for those tasks. Therefore, in this study, we apply an LSTM-
based framework to correct phoneme sequence estimation in an
ASR post-processing phase. We show that the error-corrected
phoneme-based transcriptions produced by the LSTM-based es-
timator improve the STD performance on STD test collections.

The basic idea of this study is to predict a correct phoneme
using the phoneme history (sequence of phonemes) with an
RNN. The proposed LSTM-based framework is the same as
a previously proposed RNN-based language model (LM) [6].
However, differing from previously proposed RNN-based lan-
guage modeling frameworks, this study examines phoneme-
based ASR error diversity in various ASR system outputs for
phoneme estimation. In other words, the proposed LSTM-based
phoneme estimator trains phoneme error patterns in the history,
i.e., phoneme sequences produced by multiple ASR systems
and estimates a correct phoneme using the phoneme error pat-
tern history.

Because our approach uses only phoneme-based transcrip-
tions of speech data created by ASR system(s); thus, it can be
applied to phoneme-based transcriptions from any ASR sys-
tems. This is an advantage of the proposed framework. In this
study, we use 10 types of ASR systems with different acoustic
models (AMs) and LMs.

The proposed approach is also similar to the error cor-
rection process in the Recognizer Output Voting Error Reduc-
tion (ROVER) method proposed by Fiscus [10]. The ROVER
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Figure 1: STD flow with phoneme estimation.

method can reduce ASR errors by combining multiple ASR sys-
tem outputs using a voting process. We use a machine learning
(deep learning) technique with the ROVER framework’s error
correction process to generate more accurate N-best transcrip-
tions of search-targeted speech.

In this paper, we show that the LSTM-based phoneme es-
timator can obtain phoneme-based N-best transcriptions with
fewer phoneme recognition errors compared to the N-best tran-
scriptions from the best ASR system. In addition, we show
that, compared to our previously proposed STD system with a
conditional random field (CRF)-based triphone estimator [11],
the proposed LSTM-based phoneme estimator system improves
STD performance on two STD test collections. The experimen-
tal results show that, on the two test collections, the STD system
with the phoneme estimator achieved an improvement of 0.088
and 0.099 points (i.e., 11.6% and 21.5%, respectively) in mean
average precision (MAP) compared to the CRF-based triphone
estimator.

2. LSTM-based Phoneme Sequence
Estimation

Figure 1 illustrates the STD process with LSTM-based correct
phoneme sequence estimation. First, search-targeted speech
data are speech-recognized by N ASR systems1. Then, an
LSTM-based phoneme estimator outputs posterior-gram se-
quences. In this study, such sequences are used as rich represen-
tations of phoneme-based transcriptions. Next, an STD engine
searches a query term for the posterior-gram representation of
the target speech data.

2.1. LSTM-based phoneme estimator

The LSTM-based phoneme estimator process is shown in Fig-
ure 2. In Figure 2, Vn is the n-th input vector and pn is the
n-th estimated phoneme, which is determined by the softmax
function in the output layer. Here the LSTM-based phoneme
estimator has one LSTM hidden layer and four fully-connected
neural network layers. The number of nodes in each hidden
layer is 512. We use a rectified linear unit [12] as an activation
function and stochastic gradient descent to update parameters.
The number of nodes in the output layer is 35, which is equal to
the number of phoneme classes.

Figure 3 shows an example vector representation of input

1We use 10 ASR systems in this paper. However, the proposed
method is not bound by the number of ASR systems.
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Figure 2: LSTM-based phoneme estimator.

ASR ID Outputs	of	10	ASR	systems	
(all	outputs	are	converted	into	phoneme	sequence)	

ASR #1 k o s @ a @ @ i @
ASR #2 q o s u a @ a @ N
ASR #3 k o s @ a m a i @
ASR #4 k o s @ a @ @ @ N
ASR #5 k o s @ a @ @ @ N
ASR #6 @ @ s @ a @ @ @ N
ASR #7 b o s @ a a a @ @
ASR #8 @ @ s @ a b @ i @
ASR #9 @ @ s @ a @ @ @ N
ASR #10 @ @ s @ a @ @ @ N

“@”	means	a	null	phoneme	(deletion	error)
k			q			k				k				k				@				b				@				@				@

(		-1.3,	0.1,	0.3,	-0.8,	0.4	,					.......		,	0.1	)
Each	phoneme	is	represented	as	a	five-dimensional	vector

phoneme	alignment

Figure 3: Vector representation of an input vector.

vectors. Speech data were recognized by the 10 ASR systems to
yield 10 hypotheses. Then, they were converted into phoneme
sequences. Next, we obtain a “phoneme-alignment” sequence
using a dynamic programming (DP) scheme [10]. A phoneme-
alignment is input to the LSTM-based phoneme estimator.

Each phoneme-alignment has 10 phonemes, including null
(phoneme deletion). When a word or a phoneme is converted
to a fixed dimensional vector, typically a 1-of-N representation
[13] is used. In this case, a phoneme can be represented as a 35-
dimensional vector because we deal with 35 types of phonemes.
However, we want the LSTM to train phoneme-to-phoneme
confusion patterns. Therefore, we convert aligned phonemes
to a vector by considering the similarity between phonemes
based on Bhattacharyya distance (BD) [14]. The BD between
phoneme p and q is calculated by the monophone-based Gaus-
sian mixture models of p and q. For the distance matrix be-
tween all phonemes, we apply principal component analysis to
the matrix. Finally, we obtain a five-dimensional vector for each
phoneme by using up to five principal components. Therefore,
the number of dimensions of the input vector is 50. A deletion
error (@) is replaced by the subsequent phoneme.

2.2. STD engine

Figure 4 shows an example of the term search process for a
query consisting of seven phonemes for a posterior-gram se-
quence of target speech data. The search process is very simple,
i.e., DP matching between a phoneme sequence of a query and
a posterior-gram sequence.

In this example, the detection probability of the query is
0.6. The search engine simultaneously calculates the maximum
probability of the query-detected region using the best proba-
bility of each posterior-gram. In this case, the maximum proba-
bility is 0.7. The final STD score for the query is 0.85, which is
obtained by dividing the detection probability by the maximum
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Figure 4: Calculation of a term detection score for a posterior-
gram sequence.

probability in the same region. STD performance for a query
set can be illustrated using a recall-precision curve, which is
plotted by changing a threshold.

3. CRF-based Triphone Estimation
Previously, we proposed an STD method that used CRFs to di-
rectly detect a triphone in an utterance that is a part of a search
targeted speech [11]. All words can be decomposed into a
phoneme sequence. Therefore, we could use a triphone detector
for word detection. In addition, context information is very use-
ful. We created triphone detectors in consideration of phoneme-
to-phoneme confusion error patterns in the CRF framework.
The details of the CRF-based STD procedure is explained in
the paper [11].

In this paper, we compare the CRF-based approach with the
LSTM-based approach for an STD task.

4. Experiment
4.1. Experimental setup
4.1.1. Test collections
We used two types of STD test collections to verify the pro-
posed method. One is the OOV subset of the Japanese test col-
lection for STD [15] (“CSJ-OOV set”). This test collection tar-
gets speech data from 177 lectures (39 hours) in the Corpus of
Spontaneous Japanese (CSJ) [16]. The number of utterances is
53,892. The OOV subset contains a total of 50 terms, which
were spoken 233 times in the 177 lectures. The other test col-
lection is the moderate-size task from NTCIR-10 SpokenDoc-2
[17], which contains speech data from 104 oral presentations
(28.6 hours) from the first to sixth annual SDPWS (“SDPWS
set”). In the SDPWS set, the number of query terms is 100, of
which 47 are INV queries included in the ASR dictionary of the
word-based trigram model and 53 are OOV. The occurrences of
INV and OOV in the query set are 444 and 456, respectively.

4.1.2. ASR systems
As shown in Figure 3, the speech data were recognized by the
10 ASRs. Julius ver. 4.1.3 [18], an open source decoder for

Table 1: Phoneme correct rates of the N-best transcriptions on
the CSJ speeches [%].

N-best 1-best 2-best 3-best 4-best 5-best
The best ASR 91.4 92.4 92.9 93.2 93.3
LSTM (10 ASRs) 92.8 96.5 97.5 98.0 98.4
LSTM (10-best) 91.5 94.5 95.5 96.1 96.5

Table 2: Phoneme correct rates of the N-best transcriptions on
the SDPWS speeches [%].

N-best 1-best 2-best 3-best 4-best 5-best
The best ASR 83.5 84.6 85.0 85.3 85.5
LSTM (10 ASRs) 86.9 91.7 93.5 94.8 95.8
LSTM (10-best) 83.7 87.6 89.6 90.9 92.0

LVCSR, was used in all systems. We prepared two types of
AMs and five types of LMs. The AMs are triphone-based (Tri.)
and syllable-based hidden Markov models (HMMs) (Syl.) with
both types of HMMs trained from the spoken lectures except
for the 177 lecture speeches in the CSJ. All the LMs are word-
and character-based trigrams as follows:

WBC: Word-based trigram in which words are represented by
a mix of Chinese characters, Japanese Hiragana, and
Katakana.

WBH: Word-based trigram in which all words are represented
by only Japanese Hiragana. Words comprising Chinese
characters and Katakana are converted into Hiragana se-
quences.

CB: Character-based trigram in which all characters are repre-
sented by Hiragana.

BM: Character sequence-based trigram in which the unit of
language modeling is two Hiragana characters.

None: No LM is used. Speech recognition without any LM is
equivalent to phoneme (or syllable) recognition.

Each model was trained from the many transcriptions in the CSJ
under the open speech data [19].

Finally, 10 combinations, consisting of two AMs and five
LMs, were formed.

4.1.3. Training set for models

Both the LSTM-based phoneme estimator and the CRF-based
triphone estimator were trained with the training features cre-
ated from the ASR transcriptions of the 2,525 lecture speeches
in CSJ2. Note that these differed from the 177 speeches in the
CSJ-OOV test collection.

4.1.4. Evaluation metrics

We evaluated the proposed method with two tasks, a correct
phoneme estimation task and an STD task. We calculated
phoneme correct rates as the evaluation metric for the phoneme
estimation task.

The evaluation metrics for STD included recall, precision,
F-measure of the optimal point on a recall-precision curve, and
mean average precision (MAP) values [20]. These measures are
officially used in the test collections.

2All AMs and LMs were trained under open condition for the target
speech data.
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Figure 5: Recall-precision curves for each STD approach on the
CSJ-OOV set.

Table 3: Max. F-measure and MAP values for each STD ap-
proach on the CSJ-OOV set.

Systems max. F-measure [%] MAP
LSTM (10 ASRs) 72.8 0.847
LSTM (10-best) 49.5 0.584
CRF (10 ASRs) [11] 61.1 0.759

4.2. Phoneme estimation task
Tables 1 and 2 show the phoneme correct rates of the N-best
transcriptions with the two test collections. The LM and AM in
the best ASR system were “WBC” and “Tri.”, respectively.

In this paper, the LSTM-based phoneme estimators were
trained with two feature sets, one set was made of 10 ASR sys-
tems’ 1-best outputs (“LSTM (10 ASRs)”) and the other was
made of the 10-best outputs of the best ASR system (“LSTM
(10-best)”).

As can be seen in Tables 1 and 2, “LSTM (10 ASRs)” ob-
tained the best results for both the test collections. The LSTM-
based estimator was trained with the transcriptions of the CSJ
speeches. Despite that, as can be seen in Table 2, the LSTM-
based estimator outperformed the best ASR system with the
SDPWS speech data, which differs from the training speech
corpus.

Furthermore, the feature set created by the 10 ASR systems
generated a better phoneme estimator than the 10-best outputs
from the best ASR systems. This indicates that the transcrip-
tions from the different ASR systems were effective training
data for this task. However, LSTM (10-best), which was trained
with the 10-best hypothesis from the best ASR system, also im-
proved the N-best hypothesis. In other words, the LSTM-based
phoneme estimation worked well for the single ASR system
output.

4.3. STD performance

Figures 5 and 6 show the recall-precision curves for the three
STD frameworks with the CSJ-OOV set and the SDPWS set,
respectively. Tables 3 and 4 show the F-measure values for the
maximum points of the curves and MAP values on the test col-
lections.

First, we compare the two transcriptions used to create the
training features of the LSTM-based phoneme estimator. As
shown in the abovementioned figures and tables, the LSTM
trained with the multiple ASR system output significantly out-
performs the LSTM trained using the 10-best transcriptions of
the single (best) ASR system for all evaluation metrics with
both test collections. These results demonstrate the effective-
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Figure 6: Recall-precision curves for each STD approach the
SDPWS set.

Table 4: Max. F-measure and MAP values for each STD ap-
proach on the SDPWS set.

Systems max. F-measure [%] MAP
LSTM (10 ASRs) 43.7 0.559
LSTM (10-best) 37.0 0.390
CRF (10 ASRs) [11] 28.6 0.460

ness of the training feature set created using the multiple ASR
systems outputs. The transcriptions from the multiple ASR sys-
tems have more varied phoneme-to-phoneme error confusion
patterns than the N-best output of the single ASR system. These
confusion patterns help machine learning-based error estima-
tion.

Next, we compare the LSTM-based approach (“LSTM (10
ASRs)”) with the CRF-based approach (“CRF (10 ASRs)”).
Both the STD systems were trained with the feature set based
on the transcriptions of the 10 ASR systems. These figures
and tables indicate that the LSTM-based estimator has better
phoneme estimation ability. In particular, the LSTM worked ro-
bustly on the SDPWS set, i.e., the different speech corpus from
the CSJ used to train the phoneme estimation models, because
the CRF-based approach was outperformed by the “LSTM (10-
best)” relative to F-measure.

5. Conclusion
In this study, we proposed a novel LSTM-based correct
phoneme sequence estimator for STD tasks. The proposed
LSTM-based phoneme estimator, which was trained using a
feature set based on multiple ASR system outputs, could gen-
erate more accurate phoneme-based transcriptions in the post-
processing phase of ASR.

The LSTM-based phoneme estimator was evaluated with
two tasks, i.e., correct phoneme estimation and STD. The ex-
perimental results of the phoneme estimation task show that the
proposed LSTM-based estimator could output more accurate N-
best transcriptions than the best ASR system. The STD system
with the LSTM drastically improved STD performance with the
two test collections for STD compared to our previously pro-
posed CRF-based STD system.

In the future, we will use varieties of LMs, AMs, and other
ASR systems, such as the Kaldi ASR toolkit [21], to prove the
effectiveness of the proposed approach.
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