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Abstract
Integration of multiple microphone data is one of the key ways
to achieve robust speech recognition in noisy environments or
when the speaker is located at some distance from the input de-
vice. Signal processing techniques such as beamforming are
widely used to extract a speech signal of interest from back-
ground noise. These techniques, however, are highly dependent
on prior spatial information about the microphones and the en-
vironment in which the system is being used. In this work, we
present a neural attention network that directly combines multi-
channel audio to generate phonetic states without requiring any
prior knowledge of the microphone layout or any explicit signal
preprocessing for speech enhancement. We embed an attention
mechanism within a Recurrent Neural Network based acoustic
model to automatically tune its attention to a more reliable in-
put source. Unlike traditional multi-channel preprocessing, our
system can be optimized towards the desired output in one step.
Although attention-based models have recently achieved im-
pressive results on sequence-to-sequence learning, no attention
mechanisms have previously been applied to learn potentially
asynchronous and non-stationary multiple inputs. We evaluate
our neural attention model on the CHiME-3 task, and show that
the model achieves comparable performance to beamforming
using a purely data-driven method.
Index Terms: distant speech recognition, multi-microphone
processing

1. Introduction
Many real-world speech recognition applications, including
teleconferencing, robotics and in-car spoken dialog systems,
must deal with speech from distant microphones in noisy envi-
ronments. When a human voice is captured with far-field micro-
phones in these environments, the audio signal is severely de-
graded by reverberation and background noise. This makes the
distant speech recognition task far more challenging than near-
field speech recognition, which is commonly used for voice-
based interaction today.

Acoustic signals from multiple microphones can be used
to enhance recognition accuracy due to the availability of ad-
ditional spatial information. Many researchers have proposed
techniques to efficiently integrate inputs from multiple distant
microphones. The most representative multi-channel process-
ing technique is the beamforming approach [1, 2, 3, 4], which
generates an enhanced single output signal by aligning multiple
signals through digital delays that compensate for the differ-
ent distances of the input signals. However, the performance

of beamforming is highly dependant on prior information about
microphone location and the location of the target source. For
downstream tasks such as speech recognition, this preprocess-
ing step is suboptimal because it is not directly optimized to-
wards the final objective of interest: speech recognition accu-
racy [5].

Over the past few years, deep neural networks (DNNs) have
been successfully applied to acoustic models in speech recog-
nition [6, 7, 8]. Other works [9, 10, 11, 12, 13, 14] have shown
that DNNs can learn suitable representations for distant speech
recognition by directly using multi-channel input. These ap-
proaches, however, simply concatenated acoustic features from
multiple microphones without considering the spatial proper-
ties of acoustic signal propagation, used convolutional neural
networks (CNNs) to implicitly account for spatial relationships
between channels [10, 11, 15, 16], or required pretrained beam-
forming network [14].

Recently, an ”attention mechanism” in neural networks has
been proposed to address the problem of learning variable-
length input and output sequences [17]. At each output step, the
previous output history is used to generate an attention vector
over the input sequence. This attention vector enables models
to learn to focus attention on specific parts of their input. These
attention-equipped frameworks have shown very promising re-
sults on many challenging tasks involving inputs and outputs
with variable length, including machine translation [17], pars-
ing [18], image captioning [19] and conversational modeling
[20]. Specifically, for the speech recognition tasks, [21, 22, 23]
attempted to align the input features and the desired character
sequence using an attention mechanism. However, no attention
mechanisms have been applied to learn to integrate multiple in-
puts.

In this work, we propose a novel attention-based model that
enables to learn misaligned and non-stationary multiple input
sources for distant speech recognition. We embed an attention
mechanism within a Recurrent Neural Network (RNN) based
acoustic model to automatically tune its attention to a more re-
liable input source among misaligned and non-stationary input
sources at each output step. The attention module is learned
with the normal acoustic model and is jointly optimized to-
wards phonetic state accuracy. Our attention module is unique
in the way that we 1) deal with the problem of integrating differ-
ent qualities and misalignment of multiple sources, and 2) ex-
ploit spatial information between multiple sources to accelerate
learning of auditory attention. Our system plays a similar role to
traditional multichannel preprocessing through deep neural net-
work architecture, but bypasses the limitations of preprocess-
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ing, which requires an expensive, separate step and depends on
prior information.

Through a series of experiments on the CHiME-3 [24]
dataset, we show that our proposed approach improves recog-
nition accuracy in various types of noisy environments. In ad-
dition, we also compare our approach with the beamforming
technique[24, 25, 26, 27]. The paper is organized as follows: in
Section 2 we describe our proposed attention based model. In
section 3, we evaluate the performance of our model. Finally,
in Section 4 we draw conclusions.

2. Model
In this section, we describe our neural attention model, which
allows neural networks to focus more on reliable input sources
across different temporal locations. We formulate the proposed
framework with applications in multi-channel distant speech
recognition. While there has been some recent work on end-to-
end neural speech recognition systems - from speech directly
to transcripts [28, 29, 30, 21] - our model is based on typical
hybrid DNN-HMM frameworks [31, 8], wherein the acoustic
model estimates hidden Markov model (HMM) state posteri-
ors, because we focus on dealing with the re-weighted input
representation of misaligned multiple input sources.

Given a set of input sequences X = {Xch1 , · · · ,XchN },
where Xchi is an input sequence (xchi

1 , · · · , xchi
T ) from the ith

microphone, i ∈ {1, · · · , N}, our system computes a corre-
sponding sequence of HMM acoustic states, y = (y1, · · · , yT ).
We model each output yt at time t as a conditional distribution
over the previous outputs y<t and the multiple inputs Xt at time
t using the chain rule:

P (y|X) =
∏
t

P (yt|X, y<t) (1)

Our system consists of two subnetworks:
AttendMultiSource and LSTM-AM. AttendMultiSource
is an attention-equipped Recurrent Neural Network (RNN)
for learning to determine and focus on reliable channels
and temporal locations among the candidate multiple input
sequences. AttendMultiSource produces re-weighted inputs,
X̂, based on the learned attention. This X̂ is used for the
next subnetwork LSTM-AM, which is a Long Short-Term
Memory (LSTM) acoustic model to estimate the probability of
the output HMM state y. Figure 1 visualizes our overall model
with these two components. We describe more details of each
component in the following subsections 2.1 and 2.2.

X̂ = AttendMultiSource(X,y) (2)

P (y|X) = LSTM-AM(X̂,y) (3)

2.1. Attention mechanism for multiple sources

The challenge we attempt to address with the neural attention
mechanism is the problem of misaligned multiple input sources
with non-stationary quality over time. Specifically, in multi-
channel distant speech recognition, the arrival time of each
channel is different because the acoustic path length of each
signal differs according to the location of the microphone. This
results in the misalignment of input features. These differences
in arrival time are even greater when the space between mi-
crophones is larger. Even worse, signal quality across chan-
nels can also vary over time because the speaker and interfering

Figure 1: Schematic representation of our neural attention
model.

noise sources may keep changing. Figure 1 describes the asyn-
chronous arrival of multiple inputs due to acoustic path length
differences.

We now introduce an attention mechanism to cope
with the misaligned input problem, and formulate the
AttendMultiSource. At every output step t, the
AttendMultiSource function produces a re-weighted in-
put representation X̂c, given cth candidate input set Xc. Xc

is a subsequence of time frames. As proposed by [23], we
perform similar windowing to limit the exploring temporal
location of inputs for computational efficiency and scalability.
We limit the range of attention to l=7 time frames (±3). In
our experiments, longer time steps had little impact on overall
performance and would rather benefit from microphones placed
further apart from each other.

For re-weighting the input Xc, AttendMultiSource pre-
dicts an attention weight matrix Atime,ch

t at each output step
t. Unlike previous attention mechanisms, we produce a weight
matrix rather than a vector, because our attention mechanism
additionally identifies which channel, in a given time step, is
more relevant. Therefore, Atime,ch

t is the (number of chan-
nels) by (number of candidate input frames) matrix - here it is
N x l matrix. Attention weights are calculated based on four
different information sources: 1) attention history Atime,ch

t−1 ,
2) content in the candidate sequences Xc, 3) decoding history
st−1, and 4) additional spatial information between multiple
microphones based on phase difference information PDc cor-
responding to Xc. The following three formulations describe
the AttendMultiSource function:

Etime,ch
t = MLP(st−1,A

time,ch
t−1 ,PDc,Xc) (4)

Atime,ch
t = softmax(Etime,ch

t ) (5)

X̂c = Atime,ch
t ·Xc (6)

Once we compute the energy Etime,ch
t at

time t, then we obtain Atime,ch
t by normalizing

exp(Etime,ch
t )/

∑
time,ch exp(Etime,ch

t ), such that, ∀t,
Atime,ch

t ≥ 0, and
∑

time,ch Atime,ch
t = 1 (in equation 5).

Finally, re-weighted output X̂c is generated by calculating the
dot product of the attention weights Atime,ch

t and candidate
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input Xc (in equation 6). Typically, the selection of elements
from input candidates is a weighted sum. However, we only
calculate the dot product in order to avoid losing information.

To accelerate the learning of the attention mechanism, we
use additional spatial information based on analysis of differ-
ences in arrival time. It is generally assumed that the human
auditory system can localize multiple sounds and attend to the
desired signal using information from the interaural time differ-
ence (ITD) [32, 33]. A previous study [34] attempted to emu-
late human binaural processing and estimate ITD indirectly by
comparing the phase difference between two microphones at
each frequency domain. The authors identified a ”close” time-
frequency component to the speaker based on the estimated
ITD. Similarly, we use the phase difference between two mi-
crophones to infer spatial information. The following equations
are used to compute phase difference between two microphones
i and j, where i 6= j, i, j ∈ {1 · · ·N}:

pdchi−chj = min |∠xchi − ∠xchj − 2πr| (7)

PDchi−chj = (pd
chi−chj

1 , · · · , pdchi−chj

T ) (8)

PD = {PDch1−ch2 , · · · ,PDch4−ch5} (9)

From these equations, we calculate the phase differences of
each time-frequency bin of each pair of multiple microphones.
In our work, we use 256 frequency bins for 25ms windows. The
phase feature PD is calculated in every pair of channels, then
the MLP network accepts the PDc corresponding to the input
candidates, with Xc as an additional input.

2.2. LSTM Acoustic Model

Our next subnetwork LSTM-AM serves as a typical RNN-
based acoustic model, except that it accepts the re-weighted in-
put X̂c instead of the original input Xc. LSTM-AM uses a
Long Short-Term Memory RNN (LSTM)[35], which has been
successfully applied to speech recognition tasks due to its abil-
ity to handle long-term dependencies. The LSTM contains spe-
cial units called memory blocks in the recurrent hidden layer,
and each block has memory cells ct with special three-gates
(input it, output ot, and forget ft) to control the flow of infor-
mation.

In our work, we use a simplified version of an LSTM with-
out peephole connections and biases to reduce the computa-
tional expense of learning the standard LSTM models. Al-
though LSTMs have many variations for enhancing their per-
formance, such as BLSTM [36], LSTMP [37], and PBLSTM
[22], in our work, we focus on verifying an additional atten-
tion mechanism with a simple LSTM architecture, instead of
improving LSTM acoustic modeling overall.

LSTM-AM maps a re-weighted input sequence based on
the attention mechanism X̂ = {x̂ch1 , · · · , x̂chN }, where

x̂chi = (x̂chi
1 , · · · , x̂chi

T ), to an output sequence yt =
(y1, · · · , yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = σ(x̂cWxi + ht−1Whi) (10)
ft = σ(x̂cWxf + ht−1Whf ) (11)
ct = ft · ct−1 + it · tanh(x̂cWxc + ht−1Whc) (12)
ot = σ(x̂cWxo + ht−1Who) (13)
st = ot · tanh(ct) (14)

where W terms denote weight matrices, and σ the logistic
sigmoid function. it, ft, ot, and ct are the input gate, forget
gate, output gate and cell activation vectors, respectively. Fi-
nally, the output st is used to predict the current HMM state
label by softmax (in equation 14). st is also used to predict the
next t+ 1 attention matrix as well as the next ct+1 hidden state
of LSTM-AM.

3. Experiments

3.1. Dataset

We evaluated the performance of our architecture on the
CHiME-3 task. The CHiME-3 [24] task is automatic speech
recognition for a multi-microphone tablet device in an every-
day environment - a cafe, a street junction, public transport,
and a pedestrian area. There are two types of datasets: REAL
and SIMU. The REAL data consists of 6-channel recordings.
12 US English speakers were asked to read the sentences from
the WSJ0 corpus [38] while using the multi-microphone tablet.
They were encouraged to adjust their reading positions, so that
the target distance kept changing over time. The simulated data
SIMU was generated by mixing clean utterances from WSJ0
into background recordings. To verify our method in a real
noisy environment, we first chose not to use the simulated
dataset but rather to use only the REAL dataset, with 5 chan-
nels from the five microphones, which were located in each
corner of tablet, about 10cm to 20cm away from each other (we
excluded one microphone, which faced backward in the tablet
device). We then evaluated our system on the full CHiME3
dataset, MULTI, including REAL and SIMU.

3.2. System Training

All the networks were trained on the 1,600 utterance (about 2.9
hours) REAL dataset and then on the 8,738 utterance (about
18 hours) MULTI dataset. The dataset was represented with
25ms frames of 40-dimensional log-filterbank energy features
computed every 10ms. We produced 1,992 HMM state la-
bels from a trained GMM-HMM system using near-field micro-
phone data, and these state labels were used in all subsequent
experiments. We use one layer of LSTM architecture with 512
cells. The weights in all the networks were initialized to the
range (-0.03, 0.03) with a uniform distribution, and the initial
attention weights were initialized to 1/n in n dimensions. We
set the configuration of the learning rate to 0.4 and after two
epochs it decays during training. All models resulted in a stable
convergence range from 1e-04 to 5e-04. To avoid the explod-
ing gradient problem, we limited the norm of the gradient to
1 [39]. Apart from the gradient clipping, we did not limit the
activations of the weights.

During training, we evaluated frame accuracies (i.e. phone
state labeling accuracy of acoustic frames) on the development
set of 1,640 utterances in REAL and 3,280 utterances in MULTI.
The trained models were evaluated in a speech recognition sys-
tem on a test set of 1,320 utterances. For all the decoding ex-
periments, we used a size 18 beam and size 10 lattices. There
is a mismatch between the Kaldi baseline [40] and our results
because we did not perform sequence training (sMBR) or lan-
guage model rescoring (5-gram rescoring or RNNLM). The in-
puts for all networks were log-filterbank features, with 5 chan-
nels stacking, and then with 7 frames stacking (+3-3).
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Table 1: Comparison of WERs(%) on development and evalua-
tion set of the subset (REAL) of the CHiME-3 task between the
three baseline systems, and our proposed framework, ALSTM.
The models are trained on on real data (3hrs).

MODEL (Input) Dev Eval
Baselines - Real (3hrs)
LSTM (Preprocessing noisy 5 mics) 35.2 52.1
LSTM (single noisy mic) 39.1 57.1
LSTM (5 noisy mics) 43.0 60.1
Proposed - Real (3hrs)
ALSTM 35.9 52.3
ALSTM (with phase) 33.9 50.0

Table 2: Comparison of WERs(%) on development and evalua-
tion set of the subset (REAL) of the CHiME-3 task between the
baseline system, and our proposed framework, ALSTM. The
models are trained on on real + simulated data (18hrs).

MODEL (Input) Dev Eval
Baselines - Real + Simu (18hrs)
LSTM (Preprocessing noisy 5 mics) 18.6 32.0
Proposed - Real + Simu (18hrs)
ALSTM (with phase) 16.5 26.5

3.3. Results

In Table 1 and 2, we summarize word error rates (WERs) ob-
tained on the subset of the CHiME3 task. ALSTM is our pro-
posed model, which has an attention mechanism for multiple
inputs as described in 2.1, and ALSTM (with phase) used phase
information in addition to ALSTM.

As our baselines, we built three models on the REAL dataset
and used the same simple version of the LSTM architecture
that we described in Section 2.2 with three different inputs.
LSTM (Preprocessing 5 noisy-channel) was trained on the en-
hanced signal from 5 noisy channels. We obtained the enhanced
signal from the beamforming toolkit, which was provided by
the CHiME3 organizer [24, 25, 26, 27]. LSTM (single noisy-
channel) was trained on a single noisy channel, and LSTM (5
noisy-channels) used the concatenated 5 noisy channels. We
also built LSTM (Preprocessing 5 noisy-channel) on the MULTI
dataset.

As expected, LSTM (Preprocessing 5 noisy-channel) pro-
vided a substantial improvement in WER compared to LSTM
(single noisy-channel) and LSTM (5 noisy-channel), showing
a 13.3% and 5.0% relative improvement in WER, respectively.
We also found that the model, which simply combined 5 fea-
tures across microphones, did not perform very well. It showed
poorer results than even the model trained with single micro-
phone data. This result underscores the importance of integrat-
ing channels based on analysis of differences in arrival times.

Our model with the attention mechanism provided a sig-
nificant improvement in WER compared to LSTM (5 noisy-
channel). Compared to LSTM (5 noisy-channel), ALSTM (with
phase) achieved a 17% reduction in relative error rate on the
evaluation set, and ALSTM achieved a 13% relative error rate.
These results suggest that we can leverage the attention mech-
anism to integrate multiple channels efficiently. To ensure the

improvement of the system was coming from our time-channel
attention mechanism, we compared our model to a model with
an attention mechanism across time only on single-channel in-
put. This comparison model helped to improve accuracy by 3%,
a lower gain than that achieved by the time-channel attention
mechanism.

We also found that the additional phase information can
help to learn attention and WER improved by 4.6% relatively.
In comparison with LSTM (Preprocessing 5 noisy-channel), we
found that our proposed model achieved comparable perfor-
mance to beamforming without any preprocessing. Although
ALSTM shows a slightly lower performance as compared to
LSTM (Preprocessing 5 noisy-channel), a 4.0% relative error
rate was obtained by ALSTM (with phase). When we used
LSTM-AM with the additional phase features without any at-
tention mechanism, it had a negative influence on learning.
Thus, using the phase features for the attention mechanism is
more effective than using the phase features as direct inputs of
the acoustic model.

We also evaluated the models on the MULTI dataset. We
found that our system outperformed LSTM (Preprocessing 5
noisy-channel) by 5%, and the gain from the time-channel at-
tention mechanism increased.

We then analyzed the computational aspects of our system.
As the multi-microphone is performed as part of the acoustic
model computation we have actually found it to be more com-
putationally efficient than performing beamforming followed
by an LSTM acoustic model. On our development machine
(Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz), the proposed
multi-microphone model with attention and phase operated 0.08
real-time, which was significantly faster than the beamforming
followed by acoustic model computation which operated at 0.6
real-time.

4. Conclusions
We proposed an attention-based model (ALSTM) that uses
asynchronous and non-stationary inputs from multiple channels
to generate outputs. For a distant speech recognition task, we
embedded a novel attention mechanism within a RNN-based
acoustic model to automatically tune its attention to a more reli-
able input source. We presented our results on the CHiME3 task
and found that ALSTM showed a substantial improvement in
WER. Our model achieved comparable performance to beam-
forming without any prior knowledge of the microphone layout
or any explicit preprocessing.

The implications of this work are significant and far-
reaching. Our work suggests a way to build a more efficient
ASR system by bypassing preprocessing. Our findings sug-
gest that this approach will likely do well on tasks that need
to exploit misaligned and non-stationary inputs from multiple
sources, such as multimodal problems and sensory fusion. We
believe that our attention framework can greatly improve these
tasks by maximizing the benefits of using inputs from multiple
sources.
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