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Abstract

Non-negative matrix factorization (NMF) is an appealing tech-
nique for many audio applications, such as automatic music
transcription, source separation and speech enhancement. S-
parsity constraints are commonly used on the NMF model to
discover a small number of dominant patterns. Recently, group
sparsity has been proposed for NMF based methods, in which
basis vectors belonging to a same group are permitted to acti-
vate together, while activations across groups are suppressed.
However, most group sparsity models penalize all groups using
a same parameter without considering the relative importance
of different groups for modeling the input data. In this paper,
we propose adaptive group sparsity to model the relative im-
portance of different groups with adaptive penalty parameters
and investigate its potential benefit to separate speech from oth-
er sound sources. Experimental results show that the proposed
adaptive group sparsity improves the performance over regular
group sparsity in unsupervised settings where neither the speak-
er identity nor the type of noise is known in advance.

Index Terms: non-negative matrix factorization, source sepa-
ration, group sparsity

1. Introduction
Non-negative matrix factorization (NMF) [1, 2] has been wide-
ly used in many audio applications, such as automatic music
transcription, source separation and speech enhancement. The
basic idea of NMF is to decompose the magnitude spectrum of
the source into a basis dictionary and a weight matrix which
are both constrained non-negative. The basis dictionary con-
veys meaningful dynamic patterns while the weight matrix rep-
resents the activation of different patterns along time.

Sparsity constraints are widely used in the factorization to
find a small number of best matching basis vectors [3, 4, 5, 6].
Although common sparsity constraints like an L1 norm penalty
promote discovery of dominant patterns, they do not address the
co-occurrence of basis vectors.

Recently, group sparsity [7, 8] has been used for the NMF-
based audio source separation [9, 10, 11, 12]. The idea of group
sparsity is to allow only a few pre-defined groups of basis vec-
tors to be active. For example, Sun and Mysore proposed the
Universal Speech Model(USM) [10] for speaker independen-
t single-channel speech enhancement problem. In the process
of USM, regular NMF is first used to learn a large amount of
pre-trained speaker-dependent dictionaries, and then during the
enhancement stage only a very small number of speakers’ dic-
tionaries (groups) that best fit the observed data are active with a

group sparsity penalty. Kim proposed the Mixture of Local Dic-
tionaries (MLD) [12] on single-channel speech enhancement
and showed improvement over USM. The MLD model learns
several small dictionaries for speech source, each of which cov-
ers a chunk of similar spectra across all speakers to preserve the
source’s manifold. And also MLD imposes group sparsity in a
frame-by-frame way to activate a small number of dictionaries,
which can dynamically find an optimal fit.

Furthermore, some modified group sparsity constraints
have been proposed to improve the performance. For example,
Badawy proposed relative group sparsity [13] to prevent the ac-
tivations corresponding to one universal source model from van-
ishing altogether. Hurmalainen introduced a quadratic penalty
function into group sparsity that permits dynamic relationships
between basis vectors or groups, since the basic form of group
sparsity assumes the independence of different groups without
considering which groups will activate, alone or together [14].

However, the group sparsity constraints described above ig-
nore the relative importance of different groups and penalize
their activations with a same sparsity parameter. In this paper,
we propose adaptive group sparsity to model the relative im-
portance of different groups with adaptive sparsity parameter-
s and investigate its potential benefit for unsupervised source
separation based on the USM and the MLD model. In partic-
ular, the proposed group sparsity adapts the sparsity parameter
according to the activations of each group, since the activation-
s reflect the importance of the particular group for modeling
the observed data. Experimental results show that the proposed
adaptive group sparsity improves the performance over regular
group sparsity for separating speech from other sound sources
in the unsupervised setting.

The rest of this paper is organized as follows. Section 2
reviews the standard NMF-based source separation. Section 3
describes the original USM and the MLD algorithms with group
sparsity. In Section 4 the proposed adaptive group sparsity for
NMF-based source separation is introduced in detail. The ex-
perimental setup and evaluation results are presented in Section
5. Finally the paper is concluded in Section 6.

2. Standard NMF-based source separation
NMF factorizes a non-negative matrix X ∈ R

M×N
+ (the mag-

nitude spectrogram of audio signal) into the product of a dictio-
nary W ∈ R

M×K
+ and a weight matrix H ∈ R

K×N
+ :

X ≈WH (1)

where K denotes the size of the dictionary W. The columns
of W can typically be interpreted as the spectral basis vectors
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of the sources in the spectrogram. The matrix H can then be
interpreted as the activity of each vector in a given time frame.
Factorization (1) can be achieved by minimizing the cost func-
tion:

J = dKL(X |WH) (2)

where dKL(· | ·) denotes the generalized Kullback-Leibler (KL)
divergence [5] between matrices A and B:

dKL(A |B) =
∑
m,n

(
Am,n log

Am,n

Bm,n
−Am,n +Bm,n

)
(3)

The typical pipeline to perform the standard NMF-based
source separation in the presence of two sources, say speech
and noise, follows the process detailed in [15]:

1) Compute the spectrograms XS and XN from the speech
and noise training data, as well as the spectrogram X of the test
mixed signal.

2) Factorize the spectrograms Xi ≈ WiH̄i and form the
matrix W = [WS WN ].

3) Learn the activations H from the mixture spectrogram X
while keeping W fixed: X ≈WH.

4) Partition the activations as H =

[
HS

HN

]
, and construct

the estimated speech spectrogram X̂S = WSHS . The esti-
mated speech waveform can be obtained by combining it with
the mixture phase and taking the inverse Short Time Fourier
Transform (STFT).

This algorithm is called supervised separation. In the
semi-supervised separation either the speech or noise train-
ing set is unavailable. If the noise training data is unavailable,
WN is learned from X in step 3, while only WS is learned in
step 2.

3. NMF-based source separation with
group sparsity

In the separation of speech and noise with USM, a large amoun-
t of pre-trained speaker-dependent dictionaries W(g) are first
learned using regular NMF. The universal speech model is then
obtained by concatenating the learned dictionaries into a single
large matrix:

WS = [W
(1)
S , · · · ,W(G)

S ] (4)

where G is the number of small dictionaries. In the separation
stage, the mixed spectrogram X is decomposed by minimizing
the cost function:

J = dKL(X |WH) + λΩ(HS) (5)

where W = [WS WN ], H =

[
HS

HN

]
and HS =

[H
(1)
S

T
, · · · ,H(G)

S

T
]T . The first term stands for the KL-

divergence from the original NMF algorithm. The function
Ω is the group sparsity-inducing penalty which is used to find
a small number of speakers’ dictionaries that best fit the ob-
served data. In [10], the log/l1 penalty defined as Ω(HS) =∑

g log(ε + ||H(g)
S ||1) is applied for its monotonicity and in-

duced multiplicative updates. λ is the sparsity parameter that
controls the tradeoff between separation and artifacts. An iter-
ative algorithm is derived by majorization-minimization, which
is described in [10] in detail.

In the NMF-based source separation using MLD , several
small dictionaries are learned for the speech source and each

dictionary covers similar spectra across all speakers to preserve
the manifold of speech source. And during the separation MLD
activates only a small number of dictionaries for a given noisy
input spectrum in the frame-by-frame way, which can model the
dynamics of spectra. Results have shown that MLD performs
better than USM for unsupervised source separation. The cost
function of the MLD approach is defined as:

J = dKL(X |WH) + λ
∑
t

Ω(hS,t) (6)

where HS = [hS,1, · · · ,hS,N ] and hS,t =

[h
(1)
S,t

T
, · · · ,h(G)

S,t

T
]T . Ω(hS,t) =

∑
g log(ε + ||h(g)

S,t||1)
is the group sparsity-inducing penalty that penalizes the acti-
vations in the frame-by-frame way. λ is the penalty parameter
the same as used in Equation (5). The differences between
Equation (5) and Equation (6) are the way to obtain WS and
the way the group sparsity function penalizes the activations,
which make the separation performance different.

USM and MLD are mainly used for unsupervised and semi-
supervised cases. In the unsupervised scenario, the speech
dictionary are learned using third-party speech signals. Then,
the noise dictionary is learned form the mixture. In the semi-
supervised case where only the type of noise is known, it can
be solved in a supervised case with the noise dictionary and the
suboptimal speech dictionary.

4. Adaptive group sparsity for NMF-based
source separation

According to the procedure described above, the group sparsity
functions of both the USM and the MLD algorithms penalize
different groups with a same sparsity parameter λ, so they rely
heavily on the iterative algorithm to find the best fit groups for
modeling the observed data. While these models promote gen-
eral group sparsity, for many purposes it would be beneficial to
have more control on how to select the groups in the iterative al-
gorithm. To this end, we propose adaptive group sparsity, where
the parameter λ is different and adaptive for each group in the
iterative algorithm according to the values of activations.

4.1. NMF-based source separation using USM with adap-
tive group sparsity

In the NMF-based source separation using USM with adaptive
group sparsity, the cost function in Equation (5) is modified as:

J = dKL(X |WH) +
∑
g

λ(g) log(ε+ ||H(g)
S ||1) (7)

where λ(g) is the sparsity parameter for the g-th group. In
the proposed adaptive group sparsity, λ(g) is different for each
group and adaptive in the iterative algorithm. The intuition is
that if a group is very important to model the observed data,
then the corresponding sparsity parameter should be small to
preserve the group. If a group is negligible for the observed da-
ta, then the corresponding sparsity parameter should be large to
penalize the group. To this end, we adapt the sparsity parameter
according to the activations of each group as:

λ(g) = λ0

max
g
{H(g)

S,sum}
H

(g)
S,sum

(8)

where H
(g)
S,sum = ||H(g)

S ||1 and λ0 is the regularization param-

eter. In Equation (8) we can see that the sparsity parameter λ(g)
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is negative correlated with the activations H
(g)
S,sum. Therefore,

λ(g) is able to be preserve groups with large activations and ne-
glect groups with small activations, which is beneficial to the
separation performance. Starting from the USM approach in
Section 3 and Equation (7)(8), we derive adaptive group sparsi-
ty for the NMF-based source separation as presented in Algo-
rithm 1. In order to find the groups more accurately and avoid
trapped in a bad local minimum, regular USM method is used
to initialize the activations HS and HN .

4.2. NMF-based source separation using MLD with adap-
tive group sparsity

In the NMF-based source separation using MLD with adaptive
group sparsity, the cost function in Equation (6) is modified as:

J = dKL(X |WH) +
∑
t

∑
g

λ
(g)
t log(ε+ ||h(g)

S,t||1) (9)

where λ
(g)
t is the adaptive sparsity parameter for the g-th group

in the t-th frame. Here a approach similar with Equation (8)

is used to adapt λ
(g)
t in the frame-by-frame manner, which is

defined as:

λ
(g)
t = λ0

max
g
{h(g)

S,sum,t}
h
(g)
S,sum,t

(10)

where h
(g)
S,sum,t = ||h(g)

S,t||1 and λ0 is the regularization param-
eter. Details of adaptive group sparsity with the MLD approach
is presented in Algorithm 2. And also, regular MLD method is
used to initialize the activations HS and HN .

Algorithm 1 The source separation algorithm using USM with
adaptive group sparsity

1) Input: X ∈ R
M×N
+ , {W(g)

S ∈ R
M×RS
+ |1 ≤ g ≤

G},WN (optional, semi-supervised) or RN (optional, unsu-
pervised)
2) Output: HS ,HN

3) Initialize HS and HN with output of regular USM algo-
rithm
4) Repeat

H← H⊗ WT ( X
WH

)

WT 1
5) for g = 1, · · · , G

H
(g)
S,sum = ||H(g)

S ||1
end for
for g = 1, · · · , G
λ(g) = λ0

max
g

{H(g)
S,sum

}

H
(g)
S,sum

H
(g)
S ← H

(g)
S /{1 + λ(g)

ε+||H(g)
S

||1
}

end for
if Unsupervised then

WN ←WN ⊗ ( X
WH

)HT
N

1HT
N

end if
6) until convergence

5. Experiments and Results Analysis
5.1. Preparation of the Dataset

The proposed algorithms were evaluated in separating speech
from other sound sources. All signals were sampled at 16kHz.

Algorithm 2 The source separation algorithm using MLD with
adaptive group sparsity

1) Input: X ∈ R
M×N
+ , {W(g)

S ∈ R
M×RS
+ |1 ≤ g ≤

G},WN (optional, semi-supervised) or RN (optional, unsu-
pervised)
2) Output: HS ,HN

3) Initialize HS and HN with output of regular MLD algo-
rithm
4) Repeat

H← H⊗ WT ( X
WH

)

WT 1
for g = 1, · · · , G, t = 1, · · · , N
h
(g)
S,sum,t = ||h(g)

S,t||1
end for
for g = 1, · · · , G, t = 1, · · · , N
λ
(g)
t = λ0

max
g

{h(g)
S,sum,t

}

h
(g)
S,sum,t

h
(g)
S,t ← h

(g)
S,t/{1 + λ

(g)
t

ε+||h(g)
S,t

||1
}

end for
if Unsupervised then

WN ←WN ⊗ ( X
WH

)HT
N

1HT
N

end if
5) until convergence

To calculate spectral vectors, STFT was performed with 64ms
analysis hanning window and 16ms window shift. Twenty s-
peakers (10 sentences each) randomly chosen from the training
set of TIMIT corpus were used as general data to learn speak-
er independent dictionaries. Each of 5 held-out speakers from
the test set of TIMIT corpus and each of 10 noise examples
were mixed for a total of 50 test examples. The noise examples
were from [16], which included nonstationary noises, such as
computer keyboards and birds. The test sets were mixed with
varying signal-to-noise ratio (SNR) (-10, -5, 0, 5 and 10dB),
along with the corresponding clean speech utterances. The per-
formance was evaluated using signal-to-distortion ratio (SDR),
signal-to-artifact ratio (SAR) and signal-to-interference ratio
(SIR), which were calculated by BSS-EVAL [17], to measure
the suppression of the noise and the artifacts of speech signal
that introduced by the separation process.

5.2. Algorithms

We compared the proposed algorithms with the USM and
the MLD methods with regular group sparsity. A speaker-
dependent NMF method was also used as the baseline [15].
For the speaker-dependent NMF algorithm, the left 9 sentences
of each speaker in the test set were used to train the speaker-
dependent dictionary with 20 basis vectors. For the USM, the
spectrogram of each speaker was factorized to learn a speech
dictionary and each dictionary held RS = 10 basis vectors. For
the MLD, 20 local dictionaries, each of which held RS = 10
bases were learned using the algorithm described in [12]. The
number of MM iterations and the parameter λ in both USM and
MLD methods were chosen that lead to the best average SDR
score. In the proposed algorithms, regular USM and MLD al-
gorithms were implemented by running 10 MM iterations first.
Then, the estimated activations were used as initial values in Al-
gorithm 1 and Algorithm 2, respectively. And also, the number
of MM iterations and the parameter λ0 were chosen to obtain
the best average SDR score. In all of the algorithms, the number
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Figure 1: The averaged SDR of the separated speech as a func-
tion of input SNRs.
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Figure 2: The averaged SIR of the separated speech as a func-
tion of input SNRs.

of noise bases were fixed with the optimal ones investigated in
[16].

5.3. Results Analysis

The averaged SDR, SIR and SAR of the separated speech sig-
nal as a function of the input SNRs in the unsupervised case are
illustrated in Figs 1-3, respectively. For all the input SNRs in
the experiment, the proposed algorithms have an improvement
in the SDR compared with the baseline approaches. Specifi-
cally, there is a significant improvement in terms of SIR and
comparable SAR. This means that the proposed methods are
able to suppress more noise without introducing more artifacts
than the baselines. The reason is that the proposed algorithms
penalize different groups with different and adaptive parameter-
s. Therefore, the proposed algorithms are able to preserve the
most important groups and suppress nonessential groups better,
which is the reason to suppress more noise and do not produce
more artifacts.

In addition, we further compared the proposed algorithms
with the baselines in the semi-supervised setting as the input S-
NR was 0dB. In the semi-supervised setting, a noise dictionary
for each noise type was learned, and then Algorithm 1 and Al-
gorithm 2 were implemented without the unsupervised option.
The results are shown in Table 1. Compared with the USM and
MLD methods with regular group sparsity, the proposed meth-
ods produce comparable results. A possible explanation is that
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Figure 3: The averaged SAR of the separated speech as a func-
tion of input SNRs.

Table 1: The averaged SDR, SIR and SAR of the separated
speech in the semi-supervised case.

SDR(dB) SIR(dB) SAR(dB)

Speaker-dependent NMF 9.54 15.97 11.57
USM 9.98 19.15 11.36

USM+Adaptive Group Sparsity 9.87 20.12 11.02
MLD 10.47 21.22 11.24

MLD+Adaptive Group Sparsity 10.51 21.67 11.16

once the speech dictionary and noise dictionary are both learned
in advance, regular group sparsity can find the best groups well
and imposing adaptive group sparsity does not help much.

6. Conclusions

In this paper we proposed the notion of adaptive group sparsity
for single-channel source separation. In particular, the proposed
adaptive group sparsity penalized different groups with differ-
ent and adaptive sparsity parameters according to the relative
importance of this groups for modeling the observed data. We
investigated it for separating speech and other sound sources
especially in the unsupervised setting where neither the speak-
er identity nor the type of noise was known in advance. Ex-
periments with mixtures containing various noise types showed
that the proposed adaptive group sparsity outperformed conven-
tional group sparsity in the unsupervised case. However, in the
semi-supervised case where the noise type was known in ad-
vance, the proposed adaptive group sparsity did not improve
the performance. For the future work, we expect to apply the
proposed method for other separation tasks.
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