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Abstract
We assume that only word pairs identified by human are avail-
able in a low-resource target language. The word pairs are
parameterized by a bottleneck feature (BNF) extractor that is
trained using transcribed data in a high-resource language. The
cross-lingual BNFs of the word pairs are used for training an-
other neural network to generate a new feature representation
in the target language. Pairwise learning of frame-level and
word-level feature representations are investigated. Our pro-
posed feature representations were evaluated in a word discrim-
ination task on the Switchboard telephone speech corpus. Our
learned features could bring 27.5% relative improvement over
the previously best reported result on the task.
Index Terms: feature representations, pairwise learning,
low-resource speech processing, bottleneck features (BNFs),
Siamese network

1. Introduction
Deep learning has shown success and is widely used in acoustic
modeling [1, 2, 3, 4]. Training a deep neural network usually re-
quires a large amount of data together with their frame-level la-
bels derived from word-level transcription and a pronunciation
dictionary. This method cannot be applied to many languages
in the world, especially low-resource languages and dialects.

Training neural networks (NNs) with paired examples has
been proposed for various tasks [5, 6, 7]. For languages without
any prior linguistic knowledge, it is difficult to give utterances
with appropriate labels. However, it is easy to specify whether
the words spoken in two utterances are the same. In [8, 9, 10],
they use unsupervised term discovery [11] or transcriptions to
find the same unknown type of word pairs as weak supervi-
sion, and train a deep architecture with this weak supervision
to obtain better feature representations for a word or triphone
discrimination task.

Recently bottleneck-type NNs trained using high-resource
languages have been commonly used as a feature extractor
for different tasks in low-resource languages. The corre-
sponding bottleneck features (BNFs) form a compact (low-
dimensional) representation capturing information for phone
classification. Experiments in automatic speech recognition
(ASR) have showed that the extractor of BNFs [12, 13] (and
related MLP posteriors [14, 15] trained on large amounts of
data could help to improve the recognition of a new target lan-
guage. Moreover, cross-lingual BNFs have been widely used
in language-independent query-by-example spoken term detec-
tion [16, 17, 18, 19, 20]. These works imply that using cross-
lingual resource is a potential way to learn NN representations

for deep architecture with limited resource in target language,
and cross-lingual BNFs might be good feature representations
for other languages.

In this paper, the cross-lingual portability of BNFs moti-
vated us to perform pairwise supervision of NNs using cross-
lingual BNFs of word pairs, and the new feature representations
for the target language were generated from the pairwise super-
vised NNs. The learned NN representations were evaluated in a
word discrimination task on the Switchboard telephone speech
corpus. To our best knowledge, this study is the first attempt
to use cross-lingual BNFs in pairwise supervision of NNs for
this task. The NN feature representations learned in previous
studies can be classified into frame-level and word-level fea-
ture representations, and our proposed method is feasible for
learning these two types of feature representations. Our ulti-
mate goal is to use the learned feature representations for down-
stream ASR and search tasks. Our experiments showed that all
the feature representations learned using cross-lingual BNFs of
word pairs outperformed those learning using MFCC features
of word pairs. We also investigated the effect of the amount of
word-pair supervision on our proposed feature representations.
In addition, we performed an invariance test on the learned rep-
resentations to investigate whether the learned features for each
phoneme were relatively more stable with respect to acoustic
variations.

2. Methods
We assume that only word pairs are available in a low-resource
target language [8, 9, 21]. We use a cross-lingual BNF extractor
to parameterize the word pairs of the target language. The cross-
lingual BNFs of the word pairs are used for training another NN
to generate a new feature representation in the target language.

2.1. Cross-lingual BNFs

We use a BNF extractor which is trained using transcribed data
from a high-resource non-target language. The architecture of
the BNF extractor is shown in Figure 1. The stacked hierar-
chical NNs [22] contain two parts: 1) the first-stage NN which
takes spectral features as input, and output the first-stage BNFs;
2) the second-stage NN which stacks the first-stage BNFs as
input, and output the second-stage BNFs (known as stacked
BNFs). Both BNFs extracted from first or second-stage NN
work fine, and we choose the latter because they empirically
provide better performance in our experiments. Of course, we
can simply use the BNF extractor to form a new feature repre-
sentations for the target language without pairwise supervision
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Figure 1: Cross-lingual BNF extraction.

of another NN. However, we believe that these cross-lingual
BNFs are sub-optimal as their training data are mismatched
with target data in languages, so we would obtain an improved
feature representation through the pairwise supervision with in-
domain data.

2.2. NN representations with word-pair information

The training of NNs with word-pair information as weak su-
pervision has been studied, no matter whether these word pairs
are identified by transcriptions [21] or unsupervised term detec-
tion [11]. In this paper we consider that it is relatively easy to
obtain word pairs identified by native speakers. With word-pair
supervision, we classify new feature representations into two
types, namely frame-level and word-level representations. We
propose the training procedures for obtaining these two types
of new feature representations, and we briefly review some im-
portant techniques for learning these two types of new feature
representations.

Frame-level feature representations map a sequence of in-
put features to a new sequence of feature vectors with the same
length. The procedure for learning our proposed frame-level
feature representations are given in Figure 2. First, cross-lingual
BNFs are extracted from a cross-lingual NN, and frame align-
ment between a word pair is done by using dynamic time warp-
ing (DTW). Then, we use the aligned frame-pair as input-output
with mean squared error (MSE) loss function to train an autoen-
coder that has been initialized by pretraining. Finally, the last
layer of the trained NNs is used to extract the new frame-level
feature representations. Since correspondence autoencoders
have been shown successful in learning frame-level represen-
tations [8], this type of NNs is adopted in our experiments 1.

Word-level feature representations map each whole word
segment to a fixed-dimensional vector. The main idea is to
find a function which makes same-word pairs more closer and
different-word pairs more further. The procedure for learning
our proposed word-level feature representations are shown in
Figure 3. We use NNs with the Siamese architecture [5] to
learn the word-level feature representations. NNs require fixed-
dimensional input. If a word segment is shorter than a prede-
fined length (usually defined as the maximum length of all word
segments), we pad a word segment into the predefined length
by placing the segment in the center and inserting zero vec-
tors into its beginning and end. Since Siamese Convolutional
Neural Network (CNN) has been shown successful in learning
word-level feature representations for the word discrimination
task [9], this type of NNs will be adopted in our experiments.
Note that other types of NNs, including time delay neural net-
work (TDNN) [6] and recurrent neural networks (RNN) [24],

1Contractive autoencoder [23] has been tried, but with only a small
improvement (AP: 0.48).
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have been adopted in Siamese architecture for paired supervi-
sion in other different tasks. The loss function 2 that we use to
train the Siamese architecture is as follows [9, 25]:

L = max{0, δ + 1− cos(x1, x2)

2
− 1− cos(x1, x3)

2
} (1)

where δ is the margin (set to 0.15 in all of our experiments), x1

and x2 are always a pair of same words while x1 and x3 are a
pair of different words, and x3 are randomly sampled in each
iteration of NN training. In addition, we trained a word clas-
sification CNN with word labels, but it did not bring consider-
able performance gain compared with using weak supervision
of word pairs [9].

3. Experiments
3.1. Setup

We evaluated the effectiveness of our proposed feature repre-
sentations using a word discrimination task on the Switchboard
telephone speech corpus. This task calculates the distance be-
tween each pair of words and decides whether they are the same
or different words. The distance is obtained by performing
DTW on the frame-level representations of each word pair, or
directly computing the cosine distance of the word-level repre-
sentations. Average precision (AP), which computes the aver-
age value of a precision over the recall interval between 0 and
1, was used to evaluate the performance of each feature repre-
sentation.

In our experiments, we considered the English speech in the
Switchboard corpus as a low-resource target language. We fol-
lowed the data setup as in [8, 9, 21]. Three non-overlapping sets
of 10k, 11k and 11k word tokens (involving around 100 minutes
in each set) selected from the corpus were used for feature learn-
ing, parameter tuning and test respectively, and each token du-
ration is between 0.5 and 2 seconds. We considered Mandarin
Chinese and Spanish as high-resource source languages. We

2We also tried different objective functions from [7], but just as ex-
plained in [9], the function used in this paper works better.
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Table 1: Average precision (AP) on test set. Pairwise super-
vision of frame-level (by correspondence autoencoders) and
word-level (by Siamese CNNs) feature representations is per-
formed using MFCC features and cross-lingual BNFs of word
pairs.

representations MFCCs
BNFs BNFs

(Mandarin) (Spanish)

original
0.214 0.421 0.504

features

correspondence
0.469 [8] 0.619 0.660

autoencoder

Siamese
0.549 [9] 0.678 0.700

CNN

used around 170 hours of data from the HKUST Mandarin Chi-
nese telephone speech corpus (LDC2005S15) and around 152
hours of data from the Fisher Spanish telephone speech corpus
(LDC2010S01) to train the two stacked BNF extractors.

The input features of training the first-stage cross-lingual
NNs are 39-dimensional feature vectors, which consist of 36-
dimensional Mel filter-bank features and 3-dimensional pitch
features. The first-stage cross-lingual NNs used the configura-
tion of 1500-1500-80-1500-X, where the first four numbers in-
dicate the number of neuron units in each layer, and X (equals
412 and 420 in the models for Mandarin Chinese and Span-
ish respectively) is the number of tied triphone states defined
in its initial Gaussian Mixture Model-Hidden Markov Model
(GMM-HMM). The input features of training the second-stage
cross-lingual NNs were the BNFs, and they were extracted from
the first-stage NNs with context expansion that concatenated
frames with time offsets [-10,-5,0,+5,+10]. The second-stage
NNs also used the configuration of 1500-1500-40-1500-X. No
pretraining was used in both two stages of NNs.

Prior to the word-pair supervision of frame-level feature
representations, pretraining the stacked autoencoders were per-
formed using 180 conversations (about 23 hours) of speech
from the Switchboard telephone speech corpus. The input and
output of the correspondence autoencoders are 40-dimensional
cross-lingual BNFs. The correspondence autoencoders were
constructed by stacking 13 hidden layers, and each hidden layer
consisted of 100 units. In addition, the input of a Siamese CNN
was two fixed-length sequences of 40-dimensional cross-lingual
BNFs from word pair. Each Siamese CNN includes two con-
volutional and max pooling layers and a fully-connected lin-
ear layer with 1024 hidden units. We implemented the corre-
spondence autoencoders and Siamese CNNs based on the open-
source code provided by Herman Kamper 3.

3.2. Comparison of different representations in word dis-
crimination task

The performances of different feature representations are shown
in Table 1, where each row and column in the table represents
an method and its input. The first row of the table shows the
performance without any supervision of word pairs. All of
the methods based on cross-lingual BNF extractors trained on
Mandarin and Spanish significantly outperform those based on
MFCC features, including the correspondence autoencoder [8]
and Siamese CNN [9] trained on MFCC features of word pairs.
This indicates that the information captured in the cross-lingual
BNFs for phone classification helps the word discrimination

3code:https://github.com/kamperh.
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Figure 4: MFCC features and cross-lingual BNFs of a same-
word pair. x-coordinate denotes frames and y-coordinate de-
notes feature dimensions.

task. Although the structures of cross-lingual BNFs trained on
Mandarin Chinese and Spanish are identical, the cross-lingual
BNFs trained on Spanish always outperform those trained on
Mandarin. We believe that it is because Mandarin Chinese
is more different to the target language than Spanish, and the
Spanish BNF extractor can capture more useful information for
phoneme and word discrimination in the target language. When
pairwise supervision on the target language data is performed,
the new learned feature representations always outperform their
original feature representation. Moreover, Siamese CNN per-
forms better than correspondence autoencoder, no matter which
input features we use in the pairwise supervision. The best per-
formance is obtained when the Siamese CNN is trained using
the Spanish BNFs of the whole word pairs.

We choose a word pair from the target data and plot their
frame-level features in Figure 4. Horizontal axes denote frames
and vertical axes denote feature dimensions. Colors in the plot
depict the value of a certain element in a feature vector at a cer-
tain frame, with red (blue) indicating large (small) values. More
similar and salient horizontal color bands at the same feature di-
mensions are revealed in the word pair of Mandarin and Span-
ish BNFs. We believe that these color bands in different feature
dimensions form the identity of words or sub-words, which fa-
cilitates word discrimination.

3.3. Dependence on the amount of word-pair supervision

To investigate dependence on the amount of word-pair supervi-
sion, we varied the number of word pairs N=100k, 10k, 1k, 100
by taking random subsets of the full 100k set as in [8, 9]. Table
2 shows the effect on AP when different numbers of word pairs
are used to train correspondence autoencoders. We can find that
cross-lingual BNFs based representations consistently outper-
form those based on MFCC features when different numbers of
word pairs are used in frame-level supervision. With 10k word
pairs (1/10 of the whole word pairs), cross-lingual BNFs based
representations give comparable performance to the whole word
pairs. This indicates that cross-lingual BNFs based representa-
tions can reach saturation at a faster rate than those MFCC fea-
ture based representations. Especially, it is encouraging that the
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Table 2: Average precision (AP) of different frame-level feature
representations on test set with different amount of word-pair
supervision. N and F indicates the number of word pairs and
frame pairs respectively.

N F MFCCs
BNFs BNFs

(Mandarin) (Spanish)

105 7 · 106 0.469 0.619 0.660
104 7 · 105 0.385 0.594 0.660
103 7 · 104 0.286 0.486 0.554
102 7 · 103 0.259 0.377 0.477

Table 3: Average precision (AP) of different word-level feature
representations on test set with different amount of word-pair
supervision. N indicates the number of word pairs.

N MFCCs BNFs (Mandarin) BNFs (Spanish)

105 0.549 0.678 0.700
104 0.459 0.631 0.656
103 0.193 0.386 0.453
102 0.067 0.184 0.243

cross-lingual BNFs based representations with no more than 1k
word pairs (1/100 of the whole word pairs) can get comparable
performance to the previous best results (AP of 0.469) on cor-
respondence autoencoder. This would be practical for the sce-
nario when limited resource is available for annotation of word
pairs.

Table 3 shows the effect on AP when different numbers
of word pairs are used to train a Siamese CNN. Similarly,
cross-lingual BNFs based representations consistently outper-
form those based on MFCC features when different numbers
of word pairs are used in word-level supervision. And the per-
formance is proportional to the amount of word-pair supervi-
sion. With 10k word pairs (1/10 of the whole word pairs),
the cross-lingual BNFs based representations significantly out-
perform the previous best performance (AP of 0.549) of those
based on MFCC features and trained on all word pairs.

Although Siamese CNNs can outperform correspondence
autoencoders when the full set is used, note that they are not
as good as correspondence autoencoders when fewer (<10k)
word pairs are available. It is possibly because Siamese CNN
needs more training data to model long temporal information in
words.

3.4. Invariance test on the learned feature representations

The learned feature representations have been proved more dis-
criminative in above experiments. To investigate whether they
are relatively more stable with respect to acoustic variations, we
performed an invariance test on the learned feature representa-
tions with respect to each phoneme in the target language. By
aligning with word-level transcription to obtain the phoneme
label of each frame on the test set, we calculated the average
variance of features for each phoneme as follows:

average(variance) =
1

d

d∑

j=1

∑n
i=1(Xij −Xj)

2

n− 1
(2)

where X denotes a matrix which is composed of frame vec-
tors that belongs to the same phoneme, Xj denotes the average
value of the j-th column of X (i.e. the average value of the j-th
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Figure 5: Phone variance of frame-level learned representa-
tions using MFCC features and cross-lingual BNFs.

feature dimension), d denotes the feature dimension (i.e. 100),
and n denotes the number of frames belonging to this phoneme.

The average variance value of each phoneme is shown in
Figure 5. It shows that the average variance of each phoneme in
cross-lingual BNF based representations is consistently smaller
than those in MFCC based representations. Moreover, the av-
erage variances in the Spanish BNF based representation are in
general smaller than those in the Mandarin Chinese BNF based
representation. We believe that our proposed feature represen-
tations are relatively less sensitive to acoustic variations (e.g.
from environments and speakers) that are common in record-
ings of human voice.

4. Conclusions
We have proposed a novel way to learn NN representations
for a low-resource language. We advocate to use the cross-
lingual knowledge obtained from a BNF extractor trained us-
ing a high-resource language to parameterize word pairs in the
target language. Our proposed method is feasible for learning
both frame-level and word-level representations. Our method
can provide an average precision (AP) of 0.700, a considerable
improvement over the previously best published result on the
word discrimination task with a Siamese CNN trained using
MFCC features of word pairs. Word-level pairwise learning by
the Siamese architecture does not require frame alignment per-
formed by DTW, which is scalable to a large amount of training
word pairs. On the other hand, frame-level pairwise learning by
correspondence autoencoder is more practical when the budget
for obtaining word pairs is limited. Our future work includes: 1)
investigating multilingual BNFs [26, 27, 28, 29, 30, 31, 32, 33]
for representation learning with word pairs; 2) applying our pro-
posed method to downstream applications such as low-resource
ASR and query-by-example spoken term detection.
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